Diatoms are a group of marine algae that are responsible for a significant part of global oxygen production. Adapted to life in an aqueous environment dominated by the blue–green light, their major light-harvesting antennae—fucoxanthin–chlorophyll protein complexes (FCPs)—exhibit different pigment compositions than of plants. Despite extensive experimental studies, until recently the theoretical description of excitation energy dynamics in these complexes was limited by the lack of high-resolution structural data. In this work, we use the recently resolved crystallographic information of the FCP complex from Phaeodactylum tricornutum diatom [Wang et al., Science 363, 6427 (2019)] and quantum chemistry-based calculations to evaluate the chlorophyll transition dipole moments, atomic transition charges from electrostatic potential, and the inter-chlorophyll couplings in this complex. The obtained structure-based excitonic couplings form the foundation for any modeling of stationary or time-resolved spectroscopic data. We also calculate the inter-pigment Förster energy transfer rates and identify two quickly equilibrating chlorophyll clusters.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
, 2nd ed. (
Wiley Blackwell
,
Chichester
,
2014
).
2.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
Singapore
,
2000
).
3.
W.
Kühlbrandt
,
D. N.
Wang
, and
Y.
Fujiyoshi
, “
Atomic model of plant light-harvesting complex by electron crystallography
,”
Nature
367
,
614
621
(
1994
).
4.
Z.
Liu
,
H.
Yan
,
K.
Wang
,
T.
Kuang
,
J.
Zhang
,
L.
Gui
,
X.
An
, and
W.
Chang
, “
Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution
,”
Nature
428
,
287
292
(
2004
).
5.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
, “
Lessons from nature about solar light harvesting
,”
Nat. Chem.
3
,
763
774
(
2011
).
6.
R.
Croce
and
H.
van Amerongen
, “
Natural strategies for photosynthetic light harvesting
,”
Nat. Chem. Biol.
10
,
492
501
(
2014
).
7.
T.
Mirkovic
,
E. E.
Ostroumov
,
J. M.
Anna
,
R.
van Grondelle
,
Govindjee
, and
G. D.
Scholes
, “
Light absorption and energy transfer in the antenna complexes of photosynthetic organisms
,”
Chem. Rev.
117
,
249
293
(
2016
).
8.
R.
Croce
and
H.
van Amerongen
, “
Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy
,”
Science
369
,
eaay2058
(
2020
).
9.
V. I.
Novoderezhkin
,
M. A.
Palacios
,
H.
van Amerongen
, and
R.
van Grondelle
, “
Excitation dynamics in the LHCII complex of higher plants: Modeling based on the 2.72 Å crystal structure
,”
J. Phys. Chem. B
109
,
10493
10504
(
2005
).
10.
F.
Müh
,
M. E.-A.
Madjet
, and
T.
Renger
, “
Structure-based identification of energy sinks in plant light-harvesting complex II
,”
J. Phys. Chem. B
114
,
13517
13535
(
2010
).
11.
C. D. P.
Duffy
,
J.
Chmeliov
,
M.
Macernis
,
J.
Sulskus
,
L.
Valkunas
, and
A. V.
Ruban
, “
Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII
,”
J. Phys. Chem. B
117
,
10974
10986
(
2013
).
12.
J.
Chmeliov
,
W. P.
Bricker
,
C.
Lo
,
E.
Jouin
,
L.
Valkunas
,
A. V.
Ruban
, and
C. D. P.
Duffy
, “
An ‘all pigment’ model of excitation quenching in LHCII
,”
Phys. Chem. Chem. Phys.
17
,
15857
15867
(
2015
).
13.
V.
Sláma
,
L.
Cupellini
, and
B.
Mennucci
, “
Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description
,”
Phys. Chem. Chem. Phys.
22
,
16783
16795
(
2020
).
14.
P. G.
Falkowski
,
R. T.
Barber
, and
V.
Smetacek
, “
Biogeochemical controls and feedbacks on ocean primary production
,”
Science
281
,
200
206
(
1998
).
15.
C. B.
Field
,
M. J.
Behrenfeld
,
J. T.
Randerson
, and
P.
Falkowski
, “
Primary production of the biosphere: Integrating terrestrial and oceanic components
,”
Science
281
,
237
240
(
1998
).
16.
D. G.
Mann
, “
The species concept in diatoms
,”
Phycologia
38
,
437
495
(
1999
).
17.
P. G.
Falkowski
,
M. E.
Katz
,
A. H.
Knoll
,
A.
Quigg
,
J. A.
Raven
,
O.
Schofield
, and
F. J. R.
Taylor
, “
The evolution of modern eukaryotic phytoplankton
,”
Science
305
,
354
360
(
2004
).
18.
C.
Büchel
, “
Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states
,”
Biochemistry
42
,
13027
13034
(
2003
).
19.
P.
Kuczynska
,
M.
Jemiola-Rzeminska
, and
K.
Strzalka
, “
Photosynthetic pigments in diatoms
,”
Mar. Drugs
13
,
5847
5881
(
2015
).
20.
A.
Gelzinis
,
R.
Augulis
,
C.
Büchel
,
B.
Robert
, and
L.
Valkunas
, “
Confronting FCP structure with ultrafast spectroscopy data: Evidence for structural variations
,”
Phys. Chem. Chem. Phys.
23
,
806
821
(
2021
).
21.
E.
Papagiannakis
,
I.
H.M. van Stokkum
,
H.
Fey
,
C.
Büchel
, and
R.
van Grondelle
, “
Spectroscopic characterization of the excitation energy transfer in the fucoxanthin–chlorophyll protein of diatoms
,”
Photosynth. Res.
86
,
241
250
(
2005
).
22.
W.
Wang
,
L. J.
Yu
,
C.
Xu
,
T.
Tomizaki
,
S.
Zhao
,
Y.
Umena
,
X.
Chen
,
X.
Qin
,
Y.
Xin
,
M.
Suga
,
G.
Han
,
T.
Kuang
, and
J. R.
Shen
, “
Structural basis for blue-green light harvesting and energy dissipation in diatoms
,”
Science
363
,
eaav0365
(
2019
).
23.
X.
Pi
,
S.
Zhao
,
W.
Wang
,
D.
Liu
,
C.
Xu
,
G.
Han
,
T.
Kuang
,
S. F.
Sui
, and
J. R.
Shen
, “
The pigment-protein network of a diatom photosystem II–light-harvesting antenna supercomplex
,”
Science
365
,
eaax4406
(
2019
).
24.
R.
Nagao
,
K.
Kato
,
T.
Suzuki
,
K.
Ifuku
,
I.
Uchiyama
,
Y.
Kashino
,
N.
Dohmae
,
S.
Akimoto
,
J.-R.
Shen
,
N.
Miyazaki
, and
F.
Akita
, “
Structural basis for energy harvesting and dissipation in a diatom PSII–FCPII supercomplex
,”
Nat. Plants
5
,
890
901
(
2019
).
25.
M. E.
Madjet
,
A.
Abdurahman
, and
T.
Renger
, “
Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers
,”
J. Phys. Chem. B
110
,
17268
17281
(
2006
).
26.
A.
Chrysafoudi
,
S.
Maity
,
U.
Kleinekathöfer
, and
V.
Daskalakis
, “
Robust strategy for photoprotection in the light-harvesting antenna of diatoms: A molecular dynamics study
,”
J. Phys. Chem. Lett.
12
,
9626
9633
(
2021
).
27.
Schrödinger, LLC
, The PyMOL molecular graphics system, version 2.4.0,
2021
.
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16 Revision C.01,
Gaussian Inc.
,
Wallingford CT
,
2016
.
29.
C.
König
and
J.
Neugebauer
, “
First-principles calculation of electronic spectra of light-harvesting complex II
,”
Phys. Chem. Chem. Phys.
13
,
10475
10490
(
2011
).
30.
J.
Jornet-Somoza
,
J.
Alberdi-Rodriguez
,
B. F.
Milne
,
X.
Andrade
,
M. A. L.
Marques
,
F.
Nogueira
,
M. J. T.
Oliveira
,
J. J. P.
Stewart
, and
A.
Rubio
, “
Insights into colour-tuning of chlorophyll optical response in green plants
,”
Phys. Chem. Chem. Phys.
17
,
26599
26606
(
2015
).
31.
P.
López-Tarifa
,
N.
Liguori
,
N.
van den Heuvel
,
R.
Croce
, and
L.
Visscher
, “
Coulomb couplings in solubilised light harvesting complex II (LHCII): Challenging the ideal dipole approximation from TDDFT calculations
,”
Phys. Chem. Chem. Phys.
19
,
18311
18320
(
2017
).
32.
A.
Sirohiwal
,
R.
Berraud-Pache
,
F.
Neese
,
R.
Izsák
, and
D. A.
Pantazis
, “
Accurate computation of the absorption spectrum of chlorophyll a with pair natural orbital coupled cluster methods
,”
J. Phys. Chem. B
124
,
8761
8771
(
2020
).
33.
Z.-L.
Cai
,
M. J.
Crossley
,
J. R.
Reimers
,
R.
Kobayashi
, and
R. D.
Amos
, “
Density functional theory for charge transfer: The nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations
,”
J. Phys. Chem. B
110
,
15624
15632
(
2006
).
34.
S.
Yin
,
M. G.
Dahlbom
,
P. J.
Canfield
,
N. S.
Hush
,
R.
Kobayashi
, and
J. R.
Reimers
, “
Assignment of the Qy absorption spectrum of photosystem-I from Thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure
,”
J. Phys. Chem. B
111
,
9923
9930
(
2007
).
35.
M.
Higashi
,
T.
Kosugi
,
S.
Hayashi
, and
S.
Saito
, “
Theoretical study on excited states of bacteriochlorophyll a in solutions with density functional assessment
,”
J. Phys. Chem. B
118
,
10906
10918
(
2014
).
36.
J.
Zheng
,
X.
Xu
, and
D. G.
Truhlar
, “
Minimally augmented Karlsruhe basis sets
,”
Theor. Chem. Acc.
128
,
295
305
(
2010
).
37.
X.
Xu
and
D. G.
Truhlar
, “
Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds
,”
J. Chem. Theory Comput.
7
,
2766
2779
(
2011
).
38.
G. D.
Scholes
, “
Long-range resonance energy transfer in molecular systems
,”
Annu. Rev. Phys. Chem.
54
,
57
87
(
2003
).
39.
K. F.
Fox
,
V.
Balevičius
,
J.
Chmeliov
,
L.
Valkunas
,
A. V.
Ruban
, and
C. D. P.
Duffy
, “
The carotenoid pathway: What is important for excitation quenching in plant antenna complexes?
Phys. Chem. Chem. Phys.
19
,
22957
22968
(
2017
).
40.
C. M.
Breneman
and
K. B.
Wiberg
, “
Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
,”
J. Comput. Chem.
11
,
361
373
(
1990
).
41.
B. H.
Besler
,
K. M.
Merz
, Jr.
, and
P. A.
Kollman
, “
Atomic charges derived from semiempirical methods
,”
J. Comput. Chem.
11
,
431
439
(
1990
).
42.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
592
(
2012
).
43.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
, “
Absorption lineshapes of molecular aggregates revisited
,”
J. Chem. Phys.
142
,
154107
(
2015
).
44.
A.
Gelzinis
,
D.
Abramavicius
,
J. P.
Ogilvie
, and
L.
Valkunas
, “
Spectroscopic properties of photosystem II reaction center revisited
,”
J. Chem. Phys.
147
,
115102
(
2017
).
45.
Y.
Braver
,
L.
Valkunas
, and
A.
Gelzinis
, “
Quantum–classical approach for calculations of absorption and fluorescence: Principles and applications
,”
J. Chem. Theory Comput.
17
,
7157
7168
(
2021
).
46.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York, Oxford
,
1999
).
47.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley VCH
,
Weinheim
,
2011
).
48.
J. R.
Reimers
,
Z.-L.
Cai
,
R.
Kobayashi
,
M.
Rätsep
,
A.
Freiberg
, and
E.
Krausz
, “
Assignment of the Q-bands of the chlorophylls: Coherence loss via Qx–Qy mixing
,”
Sci. Rep.
3
,
2761
(
2013
).
49.
V. I.
Novoderezhkin
,
E. G.
Andrizhiyevskaya
,
J. P.
Dekker
, and
R.
van Grondelle
, “
Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption
,”
Biophys. J.
89
,
1464
1481
(
2005
).
50.
M. B.
Oviedo
and
C. G.
Sánchez
, “
Transition dipole moments of the Qy band in photosynthetic pigments
,”
J. Phys. Chem. A
115
,
12280
12285
(
2011
).
51.
E. P.
Kenny
and
I.
Kassal
, “
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
,”
J. Phys. Chem. B
120
,
25
32
(
2016
).
52.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
53.
C.
Büchel
, “
Light harvesting complexes in chlorophyll c-containing algae
,”
Biochim. Biophys. Acta, Bioenerg.
1861
,
148027
(
2020
).
54.
R. S.
Knox
and
B. Q.
Spring
, “
Dipole strengths in the chlorophylls
,”
Photochem. Photobiol.
77
,
497
501
(
2003
).
55.
E. F.
Pettersen
,
T. D.
Goddard
,
C. C.
Huang
,
G. S.
Couch
,
D. M.
Greenblatt
,
E. C.
Meng
, and
T. E.
Ferrin
, “
UCSF Chimera—A visualization system for exploratory research and analysis
,”
J. Comput. Chem.
25
,
1605
1612
(
2004
).
56.
S.
Jurinovich
,
C.
Curutchet
, and
B.
Mennucci
, “
The Fenna–Matthews–Olson protein revisited: A fully polarizable (TD)DFT/MM description
,”
ChemPhysChem
15
,
3194
3204
(
2014
).
57.
F.
Müh
,
M.
Plöckinger
, and
T.
Renger
, “
Electrostatic asymmetry in the reaction center of photosystem II
,”
J. Phys. Chem. Lett.
8
,
850
858
(
2017
).
58.
G. D.
Scholes
,
C.
Curutchet
,
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
, “
How solvent controls electronic energy transfer and light harvesting
,”
J. Phys. Chem. B
111
,
6978
6982
(
2007
).
59.
C.
Curutchet
,
G. D.
Scholes
,
B.
Mennucci
, and
R.
Cammi
, “
How solvent controls electronic energy transfer and light harvesting: Toward a quantum-mechanical description of reaction field and screening effects
,”
J. Phys. Chem. B
111
,
13253
13265
(
2007
).
60.
T.
Renger
and
F.
Müh
, “
Theory of excitonic couplings in dielectric media
,”
Photosynth. Res.
111
,
47
52
(
2011
).
61.
R. G.
West
,
D.
Bína
,
M.
Fuciman
,
V.
Kuznetsova
,
R.
Litvín
, and
T.
Polívka
, “
Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum
,”
Biochim. Biophys. Acta, Bioenerg.
1859
,
357
365
(
2018
).
62.
S.
Jurinovich
,
L.
Viani
,
I. G.
Prandi
,
T.
Renger
, and
B.
Mennucci
, “
Towards an ab initio description of the optical spectra of light-harvesting antennae: Application to the CP29 complex of photosystem II
,”
Phys. Chem. Chem. Phys.
17
,
14405
14416
(
2015
).
63.
L.
Cupellini
,
M.
Bondanza
,
M.
Nottoli
, and
B.
Mennucci
, “
Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation
,”
Biochim. Biophys. Acta, Bioenerg.
1861
,
148049
(
2020
).
64.
E.
Cignoni
,
V.
Slama
,
L.
Cupellini
, and
B.
Mennucci
, “
The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol
,”
J. Chem. Phys.
156
,
120901
(
2022
).
65.
M.
Yang
and
G. R.
Fleming
, “
Influence of phonons on exciton transfer dynamics: Comparison of the Redfield, Förster, and modified Redfield equations
,”
Chem. Phys.
282
,
163
180
(
2002
).
66.
V.
Novoderezhkin
,
A.
Marin
, and
R.
van Grondelle
, “
Intra- and inter-monomeric transfers in the light harvesting LHCII complex: The Redfield–Förster picture
,”
Phys. Chem. Chem. Phys.
13
,
17093
17103
(
2011
).
67.
R.
Nagao
,
M.
Yokono
,
Y.
Ueno
,
T.
Suzuki
,
M.
Kumazawa
,
K.-H.
Kato
,
N.
Tsuboshita
,
N.
Dohmae
,
K.
Ifuku
,
J.-R.
Shen
, and
S.
Akimoto
, “
Enhancement of excitation-energy quenching in fucoxanthin chlorophyll a/c-binding proteins isolated from a diatom Phaeodactylum tricornutum upon excess-light illumination
,”
Biochim. Biophys. Acta, Bioenerg.
1862
,
148350
(
2021
).
68.
S.
Akimoto
,
A.
Teshigahara
,
M.
Yokono
,
M.
Mimuro
,
R.
Nagao
, and
T.
Tomo
, “
Excitation relaxation dynamics and energy transfer in fucoxanthin–chlorophyll a/c-protein complexes, probed by time-resolved fluorescence
,”
Biochim. Biophys. Acta, Bioenerg.
1837
,
1514
1521
(
2014
).
69.
E.
Songaila
,
R.
Augulis
,
A.
Gelzinis
,
V.
Butkus
,
A.
Gall
,
C.
Büchel
,
B.
Robert
,
D.
Zigmantas
,
D.
Abramavicius
, and
L.
Valkunas
, “
Ultrafast energy transfer from chlorophyll c2 to chlorophyll a in fucoxanthin–chlorophyll protein complex
,”
J. Phys. Chem. Lett.
4
,
3590
3595
(
2013
).
70.
V.
Butkus
,
A.
Gelzinis
,
R.
Augulis
,
A.
Gall
,
C.
Büchel
,
B.
Robert
,
D.
Zigmantas
,
L.
Valkunas
, and
D.
Abramavicius
, “
Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study
,”
J. Chem. Phys.
142
,
212414
(
2015
).

Supplementary Material

You do not currently have access to this content.