Dynamic Light Scattering (DLS) is a well-known technique to study the relaxation times of systems at equilibrium. In many soft matter systems, we actually have to consider non-equilibrium or non-stationary situations. We discuss here the principles, the signal processing techniques we developed, based on regularized inverse Laplace transform, sliding with time, and the light scattering signal acquisition, which enable us to use DLS experiments in this general situation. In this article, we show how to obtain such a time-Laplace analysis. We claim that this method can be adapted to numerous DLS experiments dealing with non-equilibrium systems so as to extract the non-stationary distribution of relaxation times. To prove that, we test this time-Laplace method on three different non-equilibrium processes or systems investigated by means of the DLS technique: the cooling kinetics of a colloidal particle solution, the sol–gel transition and the internal dynamics of a living cell nucleus.

1.
T.
Tadros
,
P.
Izquierdo
,
J.
Esquena
, and
C.
Solans
, “
Formation and stability of nano-emulsions
,”
Adv. Colloid Interface Sci.
108–109
,
303
318
(
2004
).
2.
P. A.
Hassan
,
S.
Rana
, and
G.
Verma
, “
Making sense of Brownian motion: Colloid characterization by dynamic light scattering
,”
Langmuir
31
,
3
12
(
2015
).
3.
S.
Bhattacharjee
, “
DLS and zeta potential—What they are and what they are not?
,”
J. Controlled Release
235
,
337
351
(
2016
).
4.
F.
Nallet
,
D.
Roux
, and
J.
Prost
, “
Hydrodynamics of lyotropic smectics: A dynamic light scattering study of dilute lamellar phases
,”
J. Phys. France
50
,
3147
3165
(
1989
).
5.
T.
Bellini
,
N. A.
Clark
, and
D. W.
Schaefer
, “
Dynamic light scattering study of nematic and smectic-A liquid crystal ordering in silica aerogel
,”
Phys. Rev. Lett.
74
,
2740
2743
(
1995
).
6.
É.
Freyssingeas
,
D.
Roux
, and
F.
Nallet
, “
Quasi-elastic light scattering study of highly swollen lamellar and sponge phases
,”
J.Phys. II
7
,
913
929
(
1997
).
7.
M.
Majumdar
,
P.
Salamon
,
A.
Jákli
,
J. T.
Gleeson
, and
S.
Sprunt
, “
Elastic constants and orientational viscosities of a bent-core nematic liquid crystal
,”
Phys. Rev. E
83
,
031701
(
2011
).
8.
S.
Zhou
,
K.
Neupane
,
Y. A.
Nastishin
,
A. R.
Baldwin
,
S. V.
Shiyanovskii
,
O. D.
Lavrentovich
, and
S.
Sprunt
, “
Elasticity, viscosity, and orientational fluctuations of a lyotropic chromonic nematic liquid crystal disodium cromoglycate
,”
Soft Matter
10
,
6571
6581
(
2014
).
9.
W. C. K.
Poon
, “
The physics of a model colloid-polymer mixture
,”
J. Phys.: Condens. Matter
14
,
R859
R880
(
2002
).
10.
T.
Phenrat
,
N.
Saleh
,
K.
Sirk
,
R. D.
Tilton
, and
G. V.
Lowry
, “
Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions
,”
Environ. Sci. Technol.
41
,
284
290
(
2007
).
11.
D.
Saha
,
R.
Bandyopadhyay
, and
Y. M.
Joshi
, “
Dynamic light scattering study and DLVO analysis of physicochemical interactions in colloidal suspensions of charged disks
,”
Langmuir
31
,
3012
3020
(
2015
).
12.
S.
Brunetti
,
D.
Roux
,
A. M.
Bellocq
,
G.
Fourche
, and
P.
Bothorel
, “
Micellar interactions in water-in-oil microemulsion. 2. Light scattering determination of the second virial coefficient
,”
J. Phys. Chem.
87
,
1028
1034
(
1983
).
13.
H. B.
Bohidar
and
M.
Behboudnia
, “
Characterization of reverse micelles by dynamic light scattering
,”
Colloids Surf., A
178
,
313
323
(
2001
).
14.
R.
Ganguly
and
N.
Choudhury
, “
Investigating the evolution of the phase behavior of AOT-based w/o microemulsions in dodecane as a function of droplet volume fraction
,”
J. Colloid Interface Sci.
372
,
45
51
(
2012
).
15.
K.
Devanand
and
J. C.
Selser
, “
Asymptotic behavior and long-range interactions in aqueous solutions of poly(ethylene oxide)
,”
Macromolecules
24
,
5943
5947
(
1991
).
16.
W.
Brown
,
J.
Fundin
, and
M. d. G.
Miguel
, “
Poly(ethylene oxide)-sodium dodecyl sulfate interactions studied using static and dynamic light scattering
,”
Macromolecules
25
,
7192
7198
(
1992
).
17.
J.
Jansson
,
K.
Schillen
,
G.
Olofsson
,
R.
da Silva
, and
W.
Loh
, “
The interaction between PEO-PPO-PEO triblock copolymers and ionic surfactants in aqueous solution studied using light scattering and calorimetry
,”
J. Phys. Chem. B
108
,
82
92
(
2004
).
18.
H.
Oguzlu
and
Y.
Boluk
, “
Interactions between cellulose nanocrystals and anionic and neutral polymers in aqueous solutions
,”
Cellulose
24
,
131
146
(
2017
).
19.
A.
Cumming
,
P.
Wiltzius
,
F. S.
Bates
, and
J. H.
Rosedale
, “
Light-scattering experiments on phase-separation dynamics in binary fluid mixtures
,”
Phys. Rev. A
45
,
885
897
(
1992
).
20.
J.-F.
Lutz
,
K.
Weichenhan
,
Ö.
Akdemir
, and
A.
Hoth
, “
About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate
,”
Macromolecules
40
,
2503
2508
(
2007
).
21.
W. C. K.
Poon
,
A. D.
Pirie
, and
P. N.
Pusey
, “
Gelation in colloid-polymer mixtures
,”
Faraday Discuss.
101
,
65
76
(
1995
).
22.
E.
Freyssingeas
,
M.
Graca
,
S. A.
Wieczorek
, and
R.
Hołyst
, “
Relaxation processes in mixtures of liquid crystals and polymers near phase boundaries and during phase separation
,”
J. Chem. Phys.
120
,
8277
8282
(
2004
).
23.
S.
Manley
,
H. M.
Wyss
,
K.
Miyazaki
,
J. C.
Conrad
,
V.
Trappe
,
L. J.
Kaufman
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Glasslike arrest in spinodal decomposition as a route to colloidal gelation
,”
Phys. Rev. Lett.
95
,
238302
(
2005
).
24.
M.
Shibayama
and
T.
Tanaka
, “
Volume phase transition and related phenomena of polymer gels
,”
Adv. Polym. Sci.
109
,
1
62
(
1993
).
25.
A. H.
Krall
and
D. A.
Weitz
, “
Internal dynamics and elasticity of fractal colloidal gels
,”
Phys. Rev. Lett.
80
,
778
781
(
1998
).
26.
M.
Shibayama
, “
Spatial inhomogeneity and dynamic fluctuations of polymer gels
,”
Macromol. Chem. Phys.
199
,
1
30
(
1998
).
27.
M.
Laurati
,
G.
Petekidis
,
N.
Koumakis
,
F.
Cardinaux
,
A. B.
Schofield
,
J. M.
Brader
,
M.
Fuchs
, and
S. U.
Egelhaaf
, “
Structure, dynamics, and rheology of colloid-polymer mixtures: From liquids to gels
,”
J. Chem. Phys.
130
,
134907
(
2009
).
28.
D.
Larobina
and
L.
Cipelletti
, “
Hierarchical cross-linking in physical alginate gels: A rheological and dynamic light scattering investigation
,”
Soft Matter
9
,
10005
10015
(
2013
).
29.
W.
van Megen
and
S. M.
Underwood
, “
Glass transition in colloidal hard spheres: Measurement and mode-coupling-theory analysis of the coherent intermediate scattering function
,”
Phys. Rev. E
49
,
4206
4220
(
1994
).
30.
L.
Cipelletti
and
L.
Ramos
, “
Slow dynamics in glassy soft matter
,”
J. Phys.: Condens. Matter
17
,
R253
R285
(
2005
).
31.
G. L.
Hunter
and
E. R.
Weeks
, “
The physics of the colloidal glass transition
,”
Rep. Prog. Phys.
75
,
066501
(
2012
).
32.
P. J.
Lu
and
D. A.
Weitz
, “
Colloidal particles: Crystals, glasses, and gels
,”
Annu. Rev. Condens. Matter Phys.
4
,
217
233
(
2013
).
33.
M.
Suissa
,
C.
Place
,
É.
Goillot
,
B.
Berge
, and
É.
Freyssingeas
, “
Dynamic light scattering as an investigating tool to study the global internal dynamics of a living cell nucleus
,”
Europhys. Lett.
78
,
38005
(
2007
).
34.
M.
Suissa
,
C.
Place
,
É.
Goillot
, and
E.
Freyssingeas
, “
Internal dynamics of a living cell nucleus investigated by dynamic light scattering
,”
Eur. Phys. J. E
26
,
435
448
(
2008
).
35.
M.
Suissa
,
C.
Place
,
É.
Goillot
, and
É.
Freyssingeas
, “
Evolution of the global internal dynamics of a living cell nucleus during interphase
,”
Biophys. J.
97
,
453
461
(
2009
).
36.
S. W.
Provencher
, “
A constrained regularization method for inverting data represented by linear algebraic or integral equations
,”
Comput. Phys. Commun.
27
,
213
227
(
1982
).
37.
S. W.
Provencher
, “
CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
,”
Comput. Phys. Commun.
27
,
229
242
(
1982
).
38.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics
, 2nd ed. (
Dover Publications, Inc.
,
Mineola, NY
,
2000
).
39.
P. N.
Pusey
and
R. J. A.
Tough
, “
Particle interactions
,” in
Dynamic Light Scattering. Applications of Photons Correlation Spectroscopy
, edited by
B. J.
Berne
(
Plenum Press
,
New York
,
1985
), pp.
85
179
.
40.
D. E.
Koppel
, “
Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants
,”
J. Chem. Phys.
57
,
4814
4820
(
1972
).
41.
B. J.
Frisken
, “
Revisiting the method of cumulants for the analysis of dynamic light-scattering data
,”
Appl. Opt.
40
,
4087
4091
(
2001
).
42.
A. G.
Mailer
,
P. S.
Clegg
, and
P. N.
Pusey
, “
Particle sizing by dynamic light scattering: Non-linear cumulant analysis
,”
J. Phys.: Condens. Matter
27
,
145102
(
2015
).
43.
R. N.
Andrews
,
S.
Narayanan
,
F.
Zhang
,
I.
Kuzmenko
, and
J.
Ilavsky
, “
Inverse transformation: Unleashing spatially heterogeneous dynamics with an alternative approach to XPCS data analysis
,”
J. Appl. Crystallogr.
51
,
35
46
(
2018
).
44.
R. N.
Andrews
,
S.
Narayanan
,
F.
Zhang
,
I.
Kuzmenko
, and
J.
Ilavsky
, “
CONTIN XPCS: Software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics
,”
J. Appl. Crystallogr.
51
,
205
209
(
2018
).
45.
A. G.
Zilman
and
R.
Granek
, “
Undulations and dynamic structure factor of membranes
,”
Phys. Rev. Lett.
77
,
4788
4791
(
1996
).
46.
A.
Madsen
,
R. L.
Leheny
,
H.
Guo
,
M.
Sprung
, and
O.
Czakkel
, “
Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy
,”
New J. Phys.
12
,
055001
(
2010
).
47.
A. K.
Livesey
,
P.
Licinio
, and
M.
Delaye
, “
Maximum entropy analysis of quasielastic light scattering from colloidal dispersions
,”
J. Chem. Phys.
84
,
5102
5107
(
1986
).
48.
Y.
Sun
and
J. G.
Walker
, “
Maximum likelihood data inversion for photon correlation spectroscopy
,”
Meas. Sci. Technol.
19
,
115302
(
2008
).
49.
X.
Zhu
,
J.
Shen
,
W.
Liu
,
X.
Sun
, and
Y.
Wang
, “
Nonnegative least-squares truncated singular value decomposition to particle size distribution inversion from dynamic light scattering data
,”
Appl. Opt.
49
,
6591
6596
(
2010
).
50.
L.
Cipelletti
,
H.
Bissig
,
V.
Trappe
,
P.
Ballesta
, and
S.
Mazoyer
, “
Time-resolved correlation: A new tool for studying temporally heterogeneous dynamics
,”
J. Phys.: Condens. Matter
15
,
S257
S262
(
2002
).
51.
A.
Duri
,
H.
Bissig
,
V.
Trappe
, and
L.
Cipelletti
, “
Time-resolved-correlation measurements of temporally heterogeneous dynamics
,”
Phys. Rev. E
72
,
051401
(
2005
).
52.
A.
Fluerasu
,
M.
Sutton
, and
E. M.
Dufresne
, “
X-ray intensity fluctuation spectroscopy studies on phase-ordering systems
,”
Phys. Rev. Lett.
94
,
055501
(
2005
).
53.
K.
Ludwig
,
F.
Livet
,
F.
Bley
,
J.-P.
Simon
,
R.
Caudron
,
D.
Le Bolloc’h
, and
A.
Moussaid
, “
X-ray intensity fluctuation spectroscopy studies of ordering kinetics in a Cu-Pd alloy
,”
Phys. Rev. B
72
,
144201
(
2005
).
54.
O.
Bikondoa
, “
On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis
,”
J. Appl. Crystallogr.
50
,
357
368
(
2017
).
55.
A.
Fluerasu
,
A.
Moussaïd
,
A.
Madsen
, and
A.
Schofield
, “
Slow dynamics and aging in colloidal gels studied by x-ray photon correlation spectroscopy
,”
Phys. Rev. E
76
,
010401
(
2007
).
56.
L.
Cipelletti
,
L.
Ramos
,
S.
Manley
,
E.
Pitard
,
D. A.
Weitz
,
E. E.
Pashkovski
, and
M.
Johansson
, “
Universal non-diffusive slow dynamics in aging soft matter
,”
Faraday Discuss.
123
,
237
251
(
2003
).
57.
A.
Papoulis
,
Signal Analysis
(
Dover Publications, Inc.
,
1977
).
58.
I.-G.
Marino
, RILT procedure in MATLAB, https://www.mathworks.com/matlabcentral/fileexchange/6523-rilt,
2007
.
59.
X. J.
Cao
,
H. Z.
Cummins
, and
J. F.
Morris
, “
Structural and rheological evolution of silica nanoparticle gels
,”
Soft Matter
6
,
5425
5433
(
2010
).
60.
M.
Kawaguchi
, “
Dispersion stability and rheological properties of silica suspensions in aqueous solutions
,”
Adv. Colloid Interface Sci.
284
,
102248
(
2020
).
61.
A.
Schantz Zackrisson
,
A.
Martinelli
,
A.
Matic
, and
J.
Bergenholtz
, “
Concentration effects on irreversible colloid cluster aggregation and gelation of silica dispersions
,”
J. Colloid Interface Sci.
301
,
137
144
(
2006
).
62.
W.
Smit
,
T.
Divoux
, and
M.
Manneville
, Result not yet published.
63.

Immortal cell line used in scientific research. It is the oldest and most commonly used human cell line. This line derived from cervical cancer cells.

64.
S. W.
Provencher
and
P.
Štêpánek
, “
Global analysis of dynamic light scattering autocorrelation functions
,”
Part. Part. Syst. Charact.
13
,
291
294
(
1996
).
You do not currently have access to this content.