The nuclear–electronic orbital (NEO) method is a well-established approach for treating nuclei quantum mechanically in molecular systems beyond the usual Born–Oppenheimer approximation. In this work, we present a strategy to implement the NEO method for periodic electronic structure calculations, particularly focused on multicomponent density functional theory (DFT). The NEO-DFT method is implemented in an all-electron electronic structure code, FHI-aims, using a combination of analytical and numerical integration techniques as well as a resolution of the identity scheme to enhance computational efficiency. After validating this implementation, proof-of-concept applications are presented to illustrate the effects of quantized protons on the physical properties of extended systems, such as two-dimensional materials and liquid–semiconductor interfaces. Specifically, periodic NEO-DFT calculations are performed for a trans-polyacetylene chain, a hydrogen boride sheet, and a titanium oxide–water interface. The zero-point energy effects of the protons as well as electron–proton correlation are shown to noticeably impact the density of states and band structures for these systems. These developments provide a foundation for the application of multicomponent DFT to a wide range of other extended condensed matter systems.

1.
J. A.
Morrone
and
R.
Car
,
Phys. Rev. Lett.
101
,
017801
(
2008
).
2.
M.
Ceriotti
,
J.
Cuny
,
M.
Parrinello
, and
D. E.
Manolopoulos
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
15591
(
2013
).
3.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
,
Chem. Rev.
116
,
7529
(
2016
).
4.
M. H. V.
Huynh
and
T. J.
Meyer
,
Chem. Rev.
107
,
5004
(
2007
).
5.
D. R.
Weinberg
,
C. J.
Gagliardi
,
J. F.
Hull
,
C. F.
Murphy
,
C. A.
Kent
,
B. C.
Westlake
,
A.
Paul
,
D. H.
Ess
,
D. G.
McCafferty
, and
T. J.
Meyer
,
Chem. Rev.
112
,
4016
(
2012
).
6.
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
137
,
8860
(
2015
).
7.
S.
Hammes-Schiffer
and
G.
Galli
,
Nat. Energy
6
,
700
(
2021
).
8.
B.
Li
,
J.
Zhao
,
K.
Onda
,
K. D.
Jordan
,
J.
Yang
, and
H.
Petek
,
Science
311
,
1436
(
2006
).
9.
B. C.
Wood
,
E.
Schwegler
,
W. I.
Choi
, and
T.
Ogitsu
,
J. Am. Chem. Soc.
135
,
15774
(
2013
).
10.
J.
Chen
,
Y.-F.
Li
,
P.
Sit
, and
A.
Selloni
,
J. Am. Chem. Soc.
135
,
18774
(
2013
).
11.
E.
Barry
,
R.
Burns
,
W.
Chen
,
G. X.
De Hoe
,
J. M. M.
De Oca
,
J. J.
de Pablo
,
J.
Dombrowski
,
J. W.
Elam
,
A. M.
Felts
,
G.
Galli
,
J.
Hack
,
Q.
He
,
X.
He
,
E.
Hoenig
,
A.
Iscen
,
B.
Kash
,
H. H.
Kung
,
N. H. C.
Lewis
,
C.
Liu
,
X.
Ma
,
A.
Mane
,
A. B. F.
Martinson
,
K. L.
Mulfort
,
J.
Murphy
,
K.
Mølhave
,
P.
Nealey
,
Y.
Qiao
,
V.
Rozyyev
,
G. C.
Schatz
,
S. J.
Sibener
,
D.
Talapin
,
D. M.
Tiede
,
M. V.
Tirrell
,
A.
Tokmakoff
,
G. A.
Voth
,
Z.
Wang
,
Z.
Ye
,
M.
Yesibolati
,
N. J.
Zaluzec
, and
S. B.
Darling
,
Chem. Rev.
121
,
9450
(
2021
).
12.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
13.
X.
Li
,
J. C.
Tully
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Chem. Phys.
123
,
084106
(
2005
).
14.
B. F. E.
Curchod
and
T. J.
Martínez
,
Chem. Rev.
118
,
3305
(
2018
).
15.
D.
Marx
and
M.
Parrinello
,
J. Chem. Phys.
104
,
4077
(
1996
).
16.
S. N.
Chowdhury
and
P.
Huo
,
J. Chem. Phys.
154
,
124124
(
2021
).
17.
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
105
,
123002
(
2010
).
18.
J. F.
Capitani
,
R. F.
Nalewajski
, and
R. G.
Parr
,
J. Chem. Phys.
76
,
568
(
1982
).
19.
T.
Kreibich
and
E. K. U.
Gross
,
Phys. Rev. Lett.
86
,
2984
(
2001
).
20.
O.
Butriy
,
H.
Ebadi
,
P. L.
de Boeij
,
R.
van Leeuwen
, and
E. K. U.
Gross
,
Phys. Rev. A
76
,
052514
(
2007
).
21.
A.
Chakraborty
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
131
,
124115
(
2009
).
22.
S. P.
Webb
,
T.
Iordanov
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
117
,
4106
(
2002
).
23.
T.
Iordanov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
118
,
9489
(
2003
).
24.
M. V.
Pak
and
S.
Hammes-Schiffer
,
Phys. Rev. Lett.
92
,
103002
(
2004
).
25.
C.
Swalina
,
M. V.
Pak
,
A.
Chakraborty
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
110
,
9983
(
2006
).
26.
D.
Mejía-Rodríguez
and
A.
de la Lande
,
J. Chem. Phys.
150
,
174115
(
2019
).
27.
X.
Xu
and
Y.
Yang
,
J. Chem. Phys.
152
,
084107
(
2020
).
28.
X.
Xu
and
Y.
Yang
,
J. Chem. Phys.
153
,
074106
(
2020
).
29.
F.
Pavošević
,
T.
Culpitt
, and
S.
Hammes-Schiffer
,
Chem. Rev.
120
,
4222
(
2020
).
30.
S.
Hammes-Schiffer
,
J. Chem. Phys.
155
,
030901
(
2021
).
31.
C.
Swalina
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
Chem. Phys. Lett.
404
,
394
(
2005
).
32.
F.
Pavošević
,
B. J. G.
Rousseau
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
11
,
1578
(
2020
).
33.
F.
Pavošević
,
T.
Culpitt
, and
S.
Hammes-Schiffer
,
J. Chem. Theory Comput.
15
,
338
(
2018
).
34.
O. J.
Fajen
and
K. R.
Brorsen
,
J. Chem. Theory Comput.
17
,
965
(
2021
).
35.
Z.
Tao
,
Q.
Yu
,
S.
Roy
, and
S.
Hammes-Schiffer
,
Acc. Chem. Res.
54
,
4131
4141
(
2021
).
36.
M. V.
Pak
,
A.
Chakraborty
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
111
,
4522
(
2007
).
37.
A.
Chakraborty
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
Phys. Rev. Lett.
101
,
153001
(
2008
).
38.
Y.
Yang
,
K. R.
Brorsen
,
T.
Culpitt
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
147
,
114113
(
2017
).
39.
K. R.
Brorsen
,
Y.
Yang
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
8
,
3488
(
2017
).
40.
K. R.
Brorsen
,
P. E.
Schneider
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
149
,
044110
(
2018
).
41.
Z.
Tao
,
Y.
Yang
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
151
,
124102
(
2019
).
42.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
43.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
 et al.,
J. Chem. Phys.
155
,
084801
(
2021
).
44.
Q.
Yu
,
F.
Pavošević
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
152
,
244123
(
2020
).
45.
Q.
Sun
,
J. Comput. Chem.
36
,
1664
(
2015
).
46.
V.
Havu
,
V.
Blum
,
P.
Havu
, and
M.
Scheffler
,
J. Comput. Phys.
228
,
8367
(
2009
).
47.
F.
Knuth
,
C.
Carbogno
,
V.
Atalla
,
V.
Blum
, and
M.
Scheffler
,
Comput. Phys. Commun.
190
,
33
(
2015
).
48.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
,
New J. Phys.
14
,
053020
(
2012
).
49.
F.
Pavošević
,
Z.
Tao
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
12
,
1631
(
2021
).
50.
A. C.
Ihrig
,
J.
Wieferink
,
I. Y.
Zhang
,
M.
Ropo
,
X.
Ren
,
P.
Rinke
,
M.
Scheffler
, and
V.
Blum
,
New J. Phys.
17
,
093020
(
2015
).
51.
S. V.
Levchenko
,
X.
Ren
,
J.
Wieferink
,
R.
Johanni
,
P.
Rinke
,
V.
Blum
, and
M.
Scheffler
,
Comput. Phys. Commun.
192
,
60
(
2015
).
52.
B.
Delley
,
J. Phys. Chem.
100
,
6107
(
1996
).
53.
B.
Auer
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
132
,
084110
(
2010
).
54.
C. J.
Tymczak
,
V. T.
Weber
,
E.
Schwegler
, and
M.
Challacombe
,
J. Chem. Phys.
122
,
124105
(
2005
).
55.
A.
Irmler
,
A. M.
Burow
, and
F.
Pauly
,
J. Chem. Theory Comput.
14
,
4567
(
2018
).
56.
P.-O.
Löwdin
, (
Academic Press
,
1970
), pp.
185
199
.
57.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
58.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
59.

The geometry is optimized with NEO-TDDFT on the first electronic excited state surface. The Cartesian coordinates (in Å) are (−0.123 98, 0.672 955, 0.0) and (0.123 98, −0.672 955, 0.0) for the carbon atoms and (0.694 71, 1.430 146 5, 0.0) and (−0.694 71, −1.430 146 5, 0.0) for the hydrogen atoms.

60.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
61.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
62.
A.
Tkatchenko
,
M.
Rossi
,
V.
Blum
,
J.
Ireta
, and
M.
Scheffler
,
Phys. Rev. Lett.
106
,
118102
(
2011
).
63.
V.
Bezugly
,
M.
Albrecht
, and
U.
Birkenheuer
,
J. Phys.: Conf. Ser.
117
,
012006
(
2008
).
64.
C. S.
Yannoni
and
T. C.
Clarke
,
Phys. Rev. Lett.
51
,
1191
(
1983
).
65.
Z.
Tao
,
S.
Roy
,
P. E.
Schneider
,
F.
Pavošević
, and
S.
Hammes-Schiffer
,
J. Chem. Theory Comput.
17
,
5110
(
2021
).
66.
H.
Nishino
,
T.
Fujita
,
N. T.
Cuong
,
S.
Tominaka
,
M.
Miyauchi
,
S.
Iimura
,
A.
Hirata
,
N.
Umezawa
,
S.
Okada
,
E.
Nishibori
,
A.
Fujino
,
T.
Fujimori
,
S.-i.
Ito
,
J.
Nakamura
,
H.
Hosono
, and
T.
Kondo
,
J. Am. Chem. Soc.
139
,
13761
(
2017
).
67.
X.-M.
Chen
and
X.
Chen
,
Chem
6
,
324
(
2020
).
68.
K. I. M.
Rojas
,
N. T.
Cuong
,
H.
Nishino
,
R.
Ishibiki
,
S.-i.
Ito
,
M.
Miyauchi
,
Y.
Fujimoto
,
S.
Tominaka
,
S.
Okada
,
H.
Hosono
,
N. B.
Arboleda
,
T.
Kondo
,
Y.
Morikawa
, and
I.
Hamada
,
Commun. Mater.
2
,
81
(
2021
).
69.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
70.
I. M.
Nadeem
,
J. P. W.
Treacy
,
S.
Selcuk
,
X.
Torrelles
,
H.
Hussain
,
A.
Wilson
,
D. C.
Grinter
,
G.
Cabailh
,
O.
Bikondoa
,
C.
Nicklin
 et al.,
J. Phys. Chem. Lett.
9
,
3131
(
2018
).
71.
72.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
8
,
2564
(
2012
).
73.
A.
Severo Pereira Gomes
and
C. R.
Jacob
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
108
,
222
(
2012
).
74.
L.
Zhao
,
Z.
Tao
,
F.
Pavošević
,
A.
Wildman
,
S.
Hammes-Schiffer
, and
X.
Li
,
J. Phys. Chem. Lett.
11
,
4052
(
2020
).
75.
L.
Zhao
,
A.
Wildman
,
Z.
Tao
,
P.
Schneider
,
S.
Hammes-Schiffer
, and
X.
Li
,
J. Chem. Phys.
153
,
224111
(
2020
).

Supplementary Material

You do not currently have access to this content.