The theoretical treatment of the quantum dynamics of the phenyl iodide photodissociation requires an accurate analytical potential energy surface (PES) model. This model must also account for spin–orbit (SO) coupling. This study is the first step to construct accurate SO coupled PESs, namely, for the C–I dissociation coordinate. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) method developed over the past ten years. The SO-free Hamiltonian is represented in an asymptotic diabatic basis and then combined with an atomic effective relativistic coupling operator determined analytically. In contrast to the previously studied cases (HI, CH3I), the diabatic basis states are due to excitations in the phenyl fragment rather than the iodine atom. An accurate analytical model of the ab initio reference data is determined in two steps. The first step is a simple reference model describing the data qualitatively. This reference model is corrected through a trained artificial neural-network to achieve high accuracy. The SO-free and the fine structure states resulting from this ERCAR model are discussed extensively in the context of the photodissociation.

1.
D. W.
Chandler
and
P. L.
Houston
,
J. Chem. Phys.
87
,
1445
(
1987
).
2.
D. W.
Chandler
,
J. W.
Thoman
,
M. H. M.
Janssen
, and
D. H.
Parker
,
Chem. Phys. Lett.
156
,
151
(
1989
).
3.
M. H. M.
Janssen
,
M.
Dantus
,
H.
Guo
, and
A. H.
Zewail
,
Chem. Phys. Lett.
214
,
281
(
1993
).
4.
A. T. J. B.
Eppink
and
D. H.
Parker
,
J. Chem. Phys.
109
,
4758
(
1998
).
5.
A. T. J. B.
Eppink
and
D. H.
Parker
,
J. Chem. Phys.
110
,
832
(
1999
).
6.
A. J.
van den Brom
,
M.
Laura Lipciuc
, and
M. H. M.
Janssen
,
Chem. Phys. Lett.
368
,
324
(
2003
).
7.
L.
Rubio-Lago
,
A.
García-Vela
,
A.
Arregui
,
G. A.
Amaral
, and
L.
Bañares
,
J. Chem. Phys.
131
,
174309
(
2009
).
8.
H.
Guo
and
G. C.
Schatz
,
J. Chem. Phys.
93
,
393
(
1990
).
9.
H.
Guo
,
K. Q.
Lao
,
G. C.
Schatz
, and
A. D.
Hammerich
,
J. Chem. Phys.
94
,
6562
(
1991
).
10.
11.
M. H.
Alexander
,
C.
Rist
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
97
,
4836
(
1992
).
12.
H.
Guo
,
J. Chem. Phys.
96
,
6629
(
1992
).
13.
U.
Manthe
and
A.
Dell Hammerich
,
Chem. Phys. Lett.
211
,
7
(
1993
).
14.
A. D.
Hammerich
,
U.
Manthe
,
R.
Kosloff
,
H. D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
101
,
5623
(
1994
).
15.
D.
Xie
,
H.
Guo
,
Y.
Amatatsu
, and
R.
Kosloff
,
J. Phys. Chem. A
104
,
1009
(
2000
).
16.
D. A.
Micha
and
C. D.
Stodden
,
J. Phys. Chem. A
105
,
2890
(
2001
).
17.
A.
García-Vela
and
L.
Bañares
,
Chem. Phys. Lett.
477
,
271
(
2009
).
18.
A.
García-Vela
,
R.
de Nalda
,
J.
Durá
,
J.
González-Vázquez
, and
L.
Bañares
,
J. Chem. Phys.
135
,
154306
(
2011
).
19.
C. R.
Evenhuis
and
U.
Manthe
,
J. Phys. Chem. A
115
,
5992
(
2011
).
20.
T.
Westermann
,
R.
Brodbeck
,
A. B.
Rozhenko
,
W.
Schoeller
, and
U.
Manthe
,
J. Chem. Phys.
135
,
184102
(
2011
).
21.
M.
Dzvonik
,
S.
Yang
, and
R.
Bersohn
,
J. Chem. Phys.
61
,
4408
(
1974
).
22.
M.
Kawasaki
,
S. J.
Lee
, and
R.
Bersohn
,
J. Chem. Phys.
66
,
2647
(
1977
).
23.
A.
Freedman
,
S. C.
Yang
,
M.
Kawasaki
, and
R.
Bersohn
,
J. Chem. Phys.
72
,
1028
(
1980
).
24.
H. J.
Hwang
and
M. A.
El‐Sayed
,
J. Chem. Phys.
96
,
856
(
1992
).
25.
S. C.
O’Brien
,
C.
Kittrell
,
J. L.
Kinsey
, and
B. R.
Johnson
,
J. Chem. Phys.
96
,
67
(
1992
).
26.
C. Y.
Kung
,
B. Y.
Chang
,
C.
Kittrell
,
B. R.
Johnson
, and
J. L.
Kinsey
,
J. Phys. Chem.
97
,
2228
(
1993
).
27.
J. E.
Freitas
,
H. J.
Hwang
, and
M. A.
El-Sayed
,
J. Phys. Chem.
97
,
12481
(
1993
).
28.
H. J.
Hwang
,
J.
Griffiths
, and
M. A.
El-Sayed
,
Int. J. Mass Spectrom. Ion Processes
131
,
265
(
1994
).
29.
P. Y.
Cheng
,
D.
Zhong
, and
A. H.
Zewail
,
Chem. Phys. Lett.
237
,
399
(
1995
).
30.
H. J.
Hwang
and
M. A.
El-Sayed
,
J. Photochem. Photobiol., A
102
,
13
(
1996
).
31.
D.
Zhong
and
A. H.
Zewail
,
J. Phys. Chem. A
102
,
4031
(
1998
).
32.
S.
Unny
,
Y.
Du
,
L.
Zhu
,
K.
Truhins
,
R. J.
Gordon
,
A.
Sugita
,
M.
Kawasaki
,
Y.
Matsumi
,
R.
Delmdahl
,
D. H.
Parker
 et al,
J. Phys. Chem. A
105
,
2270
(
2001
).
33.
M.
Kadi
,
J.
Davidsson
,
A. N.
Tarnovsky
,
M.
Rasmusson
, and
E.
Åkesson
,
Chem. Phys. Lett.
350
,
93
(
2001
).
34.
M. D.
Poulsen
,
E.
Skovsen
, and
H.
Stapelfeldt
,
J. Chem. Phys.
117
,
2097
(
2002
).
35.
K.
Kavita
and
P. K.
Das
,
J. Chem. Phys.
117
,
2038
(
2002
).
36.
X.-P.
Zhang
,
Z.-R.
Wei
,
Y.
Tang
,
T.-J.
Chao
,
B.
Zhang
, and
K.-C.
Lin
,
ChemPhysChem
9
,
1130
(
2008
).
37.
T. D.
Scarborough
,
J.
Strohaber
,
D. B.
Foote
,
C. J.
McAcy
, and
C. J. G. J.
Uiterwaal
,
Phys. Chem. Chem. Phys.
13
,
13783
(
2011
).
38.
A. G.
Sage
,
T. A. A.
Oliver
,
D.
Murdock
,
M. B.
Crow
,
G. A. D.
Ritchie
,
J. N.
Harvey
, and
M. N. R.
Ashfold
,
Phys. Chem. Chem. Phys.
13
,
8075
(
2011
).
39.
L.
Drescher
,
M. C. E.
Galbraith
,
G.
Reitsma
,
J.
Dura
,
N.
Zhavoronkov
,
S.
Patchkovskii
,
M. J. J.
Vrakking
, and
J.
Mikosch
,
J. Chem. Phys.
145
,
011101
(
2016
).
40.
C.
Hu
,
Y.
Tang
,
X.
Song
,
Z.
Liu
, and
B.
Zhang
,
J. Phys. Chem. A
120
,
10088
(
2016
).
41.
D.
Ajitha
,
D. G.
Fedorov
,
J. P.
Finley
, and
K.
Hirao
,
J. Chem. Phys.
117
,
7068
(
2002
).
42.
Y.-J.
Liu
,
P.
Persson
, and
S.
Lunell
,
J. Phys. Chem. A
108
,
2339
(
2004
).
43.
A.
Devarajan
,
A.
Gaenko
,
R.
Lindh
, and
P.-Å.
Malmqvist
,
Int. J. Qunatum Chem.
109
,
1962
(
2009
).
44.
S.-F.
Chen
,
F.-Y.
Liu
, and
Y.-J.
Liu
,
J. Chem. Phys.
131
,
124304
(
2009
).
45.
M. H.
Palmer
,
T.
Ridley
,
S. V.
Hoffmann
,
N. C.
Jones
,
M.
Coreno
,
M.
de Simone
,
C.
Grazioli
,
M.
Biczysko
,
A.
Baiardi
, and
P.
Limão-Vieira
,
J. Chem. Phys.
142
,
134302
(
2015
).
46.
H.
Ndome
,
R.
Welsch
, and
W.
Eisfeld
,
J. Chem. Phys.
136
,
034103
(
2012
).
47.
H.
Ndome
and
W.
Eisfeld
,
J. Chem. Phys.
137
,
064101
(
2012
).
48.
N.
Wittenbrink
,
H.
Ndome
, and
W.
Eisfeld
,
J. Phys. Chem. A
117
,
7408
(
2013
).
49.
N.
Wittenbrink
and
W.
Eisfeld
,
J. Chem. Phys.
146
,
144110
(
2017
).
50.
N.
Wittenbrink
and
W.
Eisfeld
,
J. Chem. Phys.
148
,
094102
(
2018
).
51.
F.
Venghaus
and
W.
Eisfeld
,
J. Chem. Phys.
144
,
114110
(
2016
).
52.
N.
Wittenbrink
,
F.
Venghaus
,
D.
Williams
, and
W.
Eisfeld
,
J. Chem. Phys.
145
,
184108
(
2016
).
53.
D. M. G.
Williams
and
W.
Eisfeld
,
J. Chem. Phys.
149
,
204106
(
2018
).
54.
D. M. G.
Williams
,
A.
Viel
, and
W.
Eisfeld
,
J. Chem. Phys.
151
,
164118
(
2019
).
55.
D. M. G.
Williams
and
W.
Eisfeld
,
J. Phys. Chem. A
124
,
7608
(
2020
).
56.
H. J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
73
,
2342
(
1980
).
57.
H. J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5794
(
1981
).
58.
H. J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
).
59.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
60.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
61.
H. J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
62.
A.
Viel
,
D. M. G.
Williams
, and
W.
Eisfeld
,
J. Chem. Phys.
154
,
084302
(
2021
).
63.
J.
Westermayr
and
P.
Marquetand
,
Chem. Rev.
121
,
9873
(
2021
).
64.
Y.
Ralchenko
,
A. E.
Kramida
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (version 3.1.5),
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2008
, available at http://physics.nist.gov/asd3.

Supplementary Material

You do not currently have access to this content.