Atomistic-level understanding of the interfacial behavior of ionic liquids (ILs) confined in slit-like nanopores is of both fundamental and practical interest. Molecular dynamics (MD) is an efficient and robust approach to characterize the properties of confined systems in contrast with some limitations in direct experimental measurements at low-dimensions. In this research, MD simulations are used to study the biocompatible IL cholinium glycinate, [Cho][Gly], confined between two parallel plates of rutile or graphite, with the separation distance of 24 Å along the z-direction. As expected, both the microscopic local structure and dynamical behavior of the confined IL are very heterogeneous and depend effectively on the position of the ions to the pore walls. The ion z-density profile is used for segmentation of the inter-wall space into a central region and two outer layers. The behavior of ions in the central region is very similar to the bulk IL, while the behavior of the arranged ionic layers adjacent to the pore walls shows the clear deviation from the bulk IL due to confinement. In general, the confined IL shows a “solid-like” dynamics at T = 353 K, especially in the outer layers near the walls as well as in the z-direction. The presence of the “IL-rutile wall” electrostatic interaction and hydrogen bonding (H-bonding) causes a significant difference in the local structure and very sluggish dynamics of the IL adjacent to the rutile walls vs the graphite walls. Simulation reveals a significant decrease in the average number of key cation–anion H-bonds at the outer layers relative to the central regions of both confined systems. The recognized [Cho]+⋯[Gly]⋯[Cho]+ bridge structure at the central region is lost in the vicinity of the rutile walls due to inaccessibility of the hydroxyl hydrogen atom, which forms a stable H-bond with the rutile oxygen site. However, another unprecedented [Gly] bridge is confirmed and preserved near the graphite walls, and [Cho]+ cations prefer to stay parallel to the wall surface to form the van der Waals dispersion interactions with the uncharged graphite walls.

1.
A.
Le Donne
and
E.
Bodo
, “
Cholinium amino acid-based ionic liquids
,”
Biophys. Rev.
13
,
147
160
(
2021
).
2.
E.
Bodo
, “
Perspectives in the computational modeling of new generation, biocompatible ionic liquids
,”
J. Phys. Chem. B
126
,
3
13
(
2022
).
3.
F.
Borghi
and
A.
Podestà
, “
Ionic liquids under nanoscale confinement
,”
Adv. Phys.: X
5
,
1736949
(
2020
).
4.
J. W.
Lee
,
J. Y.
Shin
,
Y. S.
Chun
,
H. B.
Jang
,
C. E.
Song
, and
S.-g.
Lee
, “
Toward understanding the origin of positive effects of ionic liquids on catalysis: Formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids
,”
Acc. Chem. Res.
43
,
985
994
(
2010
).
5.
M.
Armand
,
F.
Endres
,
D. R.
MacFarlane
,
H.
Ohno
, and
B.
Scrosati
, “
Ionic-liquid materials for the electrochemical challenges of the future
,”
Nat. Mater.
8
,
621
629
(
2009
).
6.
J.
Song
, “
Research progress of ionic liquids as lubricants
,”
ACS Omega
6
,
29345
29349
(
2021
).
7.
S. P. M.
Ventura
,
F. A.
e Silva
,
M. V.
Quental
,
D.
Mondal
,
M. G.
Freire
, and
J. A. P.
Coutinho
, “
Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends
,”
Chem. Rev.
117
,
6984
7052
(
2017
).
8.
X.
Feng
,
H.
Song
,
B.
Dong
,
Y.
Yang
, and
S.
Yao
, “
Sequential extraction and separation using ionic liquids for stilbene glycoside and anthraquinones in Polygonum Multiflorum
,”
J. Mol. Liq.
241
,
27
36
(
2017
).
9.
S.
Park
and
J. G.
McDaniel
, “
Interference of electrical double layers: Confinement effects on structure, dynamics, and screening of ionic liquids
,”
J. Chem. Phys.
152
,
074709
(
2020
).
10.
Z.
Gong
and
A. A. H.
Padua
, “
Effect of side chain modifications in imidazolium ionic liquids on the properties of the electrical double layer at a molybdenum disulfide electrode
,”
J. Chem. Phys.
154
,
084504
(
2021
).
11.
B.
Demir
and
D. J.
Searles
, “
Investigation of the ionic liquid graphene electric double layer in supercapacitors using constant potential simulations
,”
Nanomaterials
10
,
2181
(
2020
).
12.
M.
Grätzel
, “
Recent advances in sensitized mesoscopic solar cells
,”
Acc. Chem. Res.
42
,
1788
1798
(
2009
).
13.
R. A.
Abu Talip
,
W. Z. N.
Yahya
, and
M. A.
Bustam
, “
Ionic liquids roles and perspectives in electrolyte for dye-sensitized solar cells
,”
Sustainability
12
,
7598
(
2020
).
14.
Z. S.
Iro
,
C.
Subramani
, and
S.
Dash
, “
A brief review on electrode materials for supercapacitor
,”
Int. J. Electrochem. Sci.
11
,
10628
10643
(
2016
).
15.
K.
Sharma
,
V.
Sharma
, and
S.
Sharma
, “
Dye-sensitized solar cells: Fundamentals and current status
,”
Nanoscale Res. Lett.
13
,
381
(
2018
).
16.
J.
Le Bideau
,
L.
Viau
, and
A.
Vioux
, “
Ionogels, ionic liquid based hybrid materials
,”
Chem. Soc. Rev.
40
,
907
925
(
2011
).
17.
L.
Viau
,
C.
Tourné-Péteilh
,
J.-M.
Devoisselle
, and
A.
Vioux
, “
Ionogels as drug delivery system: One-step sol–gel synthesis using imidazolium ibuprofenate ionic liquid
,”
Chem. Commun.
46
,
228
230
(
2010
).
18.
J.
Le Bideau
,
P.
Gaveau
,
S.
Bellayer
,
M.-A.
Néouze
, and
A.
Vioux
, “
Effect of confinement on ionic liquids dynamics in monolithic silica ionogels: 1H NMR study
,”
Phys. Chem. Chem. Phys.
9
,
5419
5422
(
2007
).
19.
M.-A.
Néouze
,
J.
Le Bideau
,
P.
Gaveau
,
S.
Bellayer
, and
A.
Vioux
, “
Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks
,”
Chem. Mater.
18
,
3931
3936
(
2006
).
20.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
, “
At the interface: Solvation and designing ionic liquids
,”
Phys. Chem. Chem. Phys.
12
,
1709
1723
(
2010
).
21.
R.
Göbel
,
P.
Hesemann
,
J.
Weber
,
E.
Möller
,
A.
Friedrich
,
S.
Beuermann
, and
A.
Taubert
, “
Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids
,”
Phys. Chem. Chem. Phys.
11
,
3653
3662
(
2009
).
22.
F.
Shi
and
Y.
Deng
, “
Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel
,”
Spectrochim. Acta, Part A
62
,
239
244
(
2005
).
23.
J.
Zhang
,
Q.
Zhang
,
F.
Shi
,
S.
Zhang
,
B.
Qiao
,
L.
Liu
,
Y.
Ma
, and
Y.
Deng
, “
Greatly enhanced fluorescence of dicyanamide anion based ionic liquids confined into mesoporous silica gel
,”
Chem. Phys. Lett.
461
,
229
234
(
2008
).
24.
M.
Kanakubo
,
Y.
Hiejima
,
K.
Minami
,
T.
Aizawa
, and
H.
Nanjo
, “
Melting point depression of ionic liquids confined in nanospaces
,”
Chem. Commun.
2006
,
1828
1830
.
25.
S.
Perkin
,
L.
Crowhurst
,
H.
Niedermeyer
,
T.
Welton
,
A. M.
Smith
, and
N. N.
Gosvami
, “
Self-assembly in the electrical double layer of ionic liquids
,”
Chem. Commun.
47
,
6572
6574
(
2011
).
26.
M. P.
Singh
,
R. K.
Singh
, and
S.
Chandra
, “
Studies on imidazolium-based ionic liquids having a large anion confined in a nanoporous silica gel matrix
,”
J. Phys. Chem. B
115
,
7505
7514
(
2011
).
27.
M. P.
Singh
,
R. K.
Singh
, and
S.
Chandra
, “
Properties of ionic liquid confined in porous silica matrix
,”
ChemPhysChem
11
,
2036
2043
(
2010
).
28.
M. P.
Singh
,
R. K.
Singh
, and
S.
Chandra
, “
Ionic liquids confined in porous matrices: Physicochemical properties and applications
,”
Prog. Mater. Sci.
64
,
73
120
(
2014
).
29.
C.
Merlet
,
M.
Salanne
, and
B.
Rotenberg
, “
New coarse-grained models of imidazolium ionic liquids for bulk and interfacial molecular simulations
,”
J. Phys. Chem. C
116
,
7687
7693
(
2012
).
30.
Y.
Zhu
,
J.
Zhou
,
X.
Lu
,
X.
Guo
, and
L.
Lu
, “
Molecular simulations on nanoconfined water molecule behaviors for nanoporous material applications
,”
Microfluid. Nanofluid.
15
,
191
205
(
2013
).
31.
S. M.
Musa
,
Computational Nanotechnology: Modeling and Applications with MATLAB®
(
CRC Press
,
2011
).
32.
Z.
Dai
,
Y.
You
,
Y.
Zhu
,
S.
Wang
,
W.
Zhu
, and
X.
Lu
, “
Atomistic insights into the layered microstructure and time-dependent stability of [BMIM][PF6] confined within the meso-slit of carbon
,”
J. Phys. Chem. B
123
,
6857
6869
(
2019
).
33.
Y.
Shen
,
X.
He
, and
F. R.
Hung
, “
Structural and dynamical properties of a deep eutectic solvent confined inside a slit pore
,”
J. Phys. Chem. C
119
,
24489
24500
(
2015
).
34.
W. V.
Karunaratne
and
C. J.
Margulis
, “
Structure and dynamics of an ionic liquid mixture film confined by mica
,”
J. Phys. Chem. C
123
,
20971
20979
(
2019
).
35.
K.
Ma
,
X.
Wang
,
J.
Forsman
, and
C. E.
Woodward
, “
Molecular dynamic simulations of ionic liquids structural variations from three to one layers inside a series of slit and cylindrical nanopores
,”
J. Phys. Chem. C
121
,
13539
13548
(
2017
).
36.
R.
Singh
,
J.
Monk
, and
F. R.
Hung
, “
Heterogeneity in the dynamics of the ionic liquid [BMIM+][PF6] confined in a slit nanopore
,”
J. Phys. Chem. C
115
,
16544
16554
(
2011
).
37.
R.
Singh
,
N. N.
Rajput
,
X.
He
,
J.
Monk
, and
F. R.
Hung
, “
Molecular dynamics simulations of the ionic liquid [EMIM+][TFMSI] confined inside rutile (110) slit nanopores
,”
Phys. Chem. Chem. Phys.
15
,
16090
16103
(
2013
).
38.
Y.
Wang
,
C.
Wang
,
Y.
Zhang
,
F.
Huo
,
H.
He
, and
S.
Zhang
, “
Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels
,”
Small
15
,
1804508
(
2019
).
39.
G.
Kritikos
,
N.
Vergadou
, and
I. G.
Economou
, “
Molecular dynamics simulation of highly confined glassy ionic liquids
,”
J. Phys. Chem. C
120
,
1013
1024
(
2016
).
40.
F.
Mohammadpour
,
M.
Heydari Dokoohaki
,
A. R.
Zolghadr
,
M. H.
Ghatee
, and
M.
Moradi
, “
Confinement of aqueous mixtures of ionic liquids between amorphous TiO2 slit nanopores: Electrostatic field induction
,”
Phys. Chem. Chem. Phys.
20
,
29493
29502
(
2018
).
41.
G.
Ori
,
F.
Villemot
,
L.
Viau
,
A.
Vioux
, and
B.
Coasne
, “
Ionic liquid confined in silica nanopores: Molecular dynamics in the isobaric–isothermal ensemble
,”
Mol. Phys.
112
,
1350
1361
(
2014
).
42.
Y.
Shim
and
H. J.
Kim
, “
Nanoporous carbon supercapacitors in an ionic liquid: A computer simulation study
,”
ACS Nano
4
,
2345
2355
(
2010
).
43.
K.
Dong
,
G.
Zhou
,
X.
Liu
,
X.
Yao
,
S.
Zhang
, and
A.
Lyubartsev
, “
Structural evidence for the ordered crystallites of ionic liquid in confined carbon nanotubes
,”
J. Phys. Chem. C
113
,
10013
10020
(
2009
).
44.
B.
Coasne
,
L.
Viau
, and
A.
Vioux
, “
Loading-controlled stiffening in nanoconfined ionic liquids
,”
J. Phys. Chem. Lett.
2
,
1150
1154
(
2011
).
45.
J.
Monk
,
R.
Singh
, and
F. R.
Hung
, “
Effects of pore size and pore loading on the properties of ionic liquids confined inside nanoporous CMK-3 carbon materials
,”
J. Phys. Chem. C
115
,
3034
3042
(
2011
).
46.
A.
Gupta
,
H. S.
Dhattarwal
, and
H. K.
Kashyap
, “
Structure of cholinium glycinate biocompatible ionic liquid at graphite electrode interface
,”
J. Chem. Phys.
154
,
184702
(
2021
).
47.
F.
Khorrami
and
M. H.
Kowsari
, “
Tracing local nanostructure of the aqueous solutions of the biocompatible [Cho][Gly] ionic liquid: Importance of hydrogen bond attraction between like-charged ions
,”
J. Phys. Chem. B
124
,
3770
3783
(
2020
).
48.
C. J.
Howard
,
T. M.
Sabine
, and
F.
Dickson
, “
Structural and thermal parameters for rutile and anatase
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
47
,
462
468
(
1991
).
49.
J. S.
Kukesh
and
L.
Pauling
, “
The problem of the graphite structure
,”
Am. Mineral.
35
,
125
(
1950
).
50.
H. O.
Pierson
,
Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications
(
William Andrew
,
2012
).
51.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
52.
H.
Mosaddeghi
,
S.
Alavi
,
M. H.
Kowsari
, and
B.
Najafi
, “
Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates
,”
J. Chem. Phys.
137
,
184703
(
2012
).
53.
W.
Smith
,
T. R.
Forester
, and
I. T.
Todorov
, The DL_POLY classic molecular simulation package, version 1.9, STFC Daresbury Laboratory, Daresbury, Warrington, UK,
2012
.
54.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Fluids
(
Oxford Science Publications
,
UK
,
1987
).
55.
N. N.
Rajput
,
J.
Monk
,
R.
Singh
, and
F. R.
Hung
, “
On the influence of pore size and pore loading on structural and dynamical heterogeneities of an ionic liquid confined in a slit nanopore
,”
J. Phys. Chem. C
116
,
5169
5181
(
2012
).
56.
A. V.
Bandura
and
J. D.
Kubicki
, “
Derivation of force field parameters for TiO2–H2O systems from ab initio calculations
,”
J. Phys. Chem. B
107
,
11072
11081
(
2003
).
57.
O.
Borodin
,
G. D.
Smith
,
R.
Bandyopadhyaya
, and
O.
Byutner
, “
Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics
,”
Macromolecules
36
,
7873
7883
(
2003
).
58.
C.
Herrera
,
G.
García
,
M.
Atilhan
, and
S.
Aparicio
, “
A molecular dynamics study on aminoacid-based ionic liquids
,”
J. Mol. Liq.
213
,
201
212
(
2016
).
59.
C.
Herrera
,
R.
Alcalde
,
M.
Atilhan
, and
S.
Aparicio
, “
Theoretical study on amino acid-based ionic pairs and their interaction with carbon nanostructures
,”
J. Phys. Chem. C
118
,
9741
9757
(
2014
).
60.
Y.
Huang
,
G.
Zhou
,
Y.
Li
,
Z.
Yang
,
M.
Shi
,
X.
Wang
,
X.
Chen
,
F.
Zhang
, and
W.
Li
, “
Molecular dynamics simulations of temperature-dependent structures and dynamics of ethylammonium nitrate protic ionic liquid: The role of hydrogen bond
,”
Chem. Phys.
472
,
105
111
(
2016
).
61.
D.
Chandler
, “
Statistical mechanics of isomerization dynamics in liquids and the transition state approximation
,”
J. Chem. Phys.
68
,
2959
2970
(
1978
).
62.
W.
Zhao
,
F.
Leroy
,
B.
Heggen
,
S.
Zahn
,
B.
Kirchner
,
S.
Balasubramanian
, and
F.
Müller-Plathe
, “
Are there stable ion-pairs in room-temperature ionic liquids? Molecular dynamics simulations of 1-n-butyl-3-methylimidazolium hexafluorophosphate
,”
J. Am. Chem. Soc.
131
,
15825
15833
(
2009
).
63.
Y.
Li
,
Z.
Yang
,
N.
Hu
,
R.
Zhou
, and
X.
Chen
, “
Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation
,”
J. Chem. Phys.
138
,
184703
(
2013
).
64.
Z.
Yang
,
Y.
Li
,
G.
Zhou
,
X.
Chen
,
D.
Tao
, and
N.
Hu
, “
Molecular dynamics simulations of hydrogen bond dynamics and far-infrared spectra of hydration water molecules around the mixed monolayer-protected Au nanoparticle
,”
J. Phys. Chem. C
119
,
1768
1781
(
2015
).
65.
B.
Bagchi
, “
Water dynamics in the hydration layer around proteins and micelles
,”
Chem. Rev.
105
,
3197
3219
(
2005
).
66.
I.
Skarmoutsos
,
T.
Welton
, and
P. A.
Hunt
, “
The importance of timescale for hydrogen bonding in imidazolium chloride ionic liquids
,”
Phys. Chem. Chem. Phys.
16
,
3675
3685
(
2014
).
67.
N.
Choudhury
and
B. M.
Pettitt
, “
Dynamics of water trapped between hydrophobic solutes
,”
J. Phys. Chem. B
109
,
6422
6429
(
2005
).
68.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J. C.
Berendsen
, “
A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field
,”
J. Chem. Phys.
108
,
10220
10230
(
1998
).
69.
M. H.
Kowsari
and
S.
Ebrahimi
, “
Capturing the effect of [PF3(C2F5)3] vs. [PF6], flexible anion vs. rigid, and scaled charge vs. unit on the transport properties of [bmim]+-based ionic liquids: A comparative MD study
,”
Phys. Chem. Chem. Phys.
20
,
13379
13393
(
2018
).
70.
C.
Cadena
,
Q.
Zhao
,
R. Q.
Snurr
, and
E. J.
Maginn
, “
Molecular modeling and experimental studies of the thermodynamic and transport properties of pyridinium-based ionic liquids
,”
J. Phys. Chem. B
110
,
2821
2832
(
2006
).
71.
B.
Guillot
, “
A molecular dynamics study of the far infrared spectrum of liquid water
,”
J. Chem. Phys.
95
,
1543
1551
(
1991
).
72.
J.
Martí
,
J.
Padró
, and
E.
Guardia
, “
Computer simulation of molecular motions in liquids: Infrared spectra of water and heavy water
,”
Mol. Simul.
11
,
321
336
(
1993
).
73.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS–A free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
51
,
2007
2023
(
2011
).
74.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
75.
Mathematica, version 10.0, Software for Technical Computation, Wolfram Research, Champaign, IL,
2014
.
76.
S.
Senapati
and
A.
Chandra
, “
Molecular relaxation in simple dipolar liquids confined between two solid surfaces
,”
Chem. Phys.
231
,
65
80
(
1998
).
77.
Y.
Zhang
,
W.
Zhu
,
J.
Li
,
Y.
Zhu
,
A.
Wang
,
X.
Lu
,
W.
Li
, and
Y.
Shi
, “
Effects of ionic hydration and hydrogen bonding on flow resistance of ionic aqueous solutions confined in molybdenum disulfide nanoslits: Insights from molecular dynamics simulations
,”
Fluid Phase Equilib.
489
,
23
29
(
2019
).
78.
H.
Mosaddeghi
,
S.
Alavi
,
M. H.
Kowsari
,
B.
Najafi
,
S.
Az’hari
, and
Y.
Afshar
, “
Molecular dynamics simulations of nano-confined methanol and methanol-water mixtures between infinite graphite plates: Structure and dynamics
,”
J. Chem. Phys.
150
,
144510
(
2019
).
79.
A.
Fang
and
A.
Smolyanitsky
, “
Large variations in the composition of ionic liquid–solvent mixtures in nanoscale confinement
,”
ACS Appl. Mater. Interfaces
11
,
27243
27250
(
2019
).
80.
Y.
Shen
,
R.
Abedin
, and
F. R.
Hung
, “
On the performance of confined deep eutectic solvents and ionic liquids for separations of carbon dioxide from methane: Molecular dynamics simulations
,”
Langmuir
35
,
3658
3671
(
2019
).
81.
B.
Docampo-Álvarez
,
V.
Gómez-González
,
T.
Méndez-Morales
,
J.
Carrete
,
J. R.
Rodríguez
,
Ó.
Cabeza
,
L. J.
Gallego
, and
L. M.
Varela
, “
Mixtures of protic ionic liquids and molecular cosolvents: A molecular dynamics simulation
,”
J. Chem. Phys.
140
,
214502
(
2014
).
82.
S. J.
Grabowski
,
Hydrogen Bonding: New Insights
(
Springer
,
The Netherlands
,
2006
).
83.
I. M.
Nadeem
,
L.
Hargreaves
,
G. T.
Harrison
,
H.
Idriss
,
A. L.
Shluger
, and
G.
Thornton
, “
Carboxylate adsorption on rutile TiO2(100): Role of Coulomb repulsion, relaxation, and steric hindrance
,”
J. Phys. Chem. C
125
,
13770
13779
(
2021
).
84.
W.
Mikenda
and
S.
Steinböck
, “
Stretching frequency vs. bond distance correlation of hydrogen bonds in solid hydrates: A generalized correlation function
,”
J. Mol. Struct.
384
,
159
163
(
1996
).
85.
D. L.
Pavia
,
G. M.
Lampman
,
G. S.
Kriz
, and
J. R.
Vyvyan
,
Introduction to Spectroscopy
, 5th ed. (
Cengage
,
Stamford, CT
,
2015
).
86.
P.
Schuster
,
G.
Zundel
,
C.
Sandorfy
, “
The Hydrogen Bond: Recent Developments in Theory and Experiments
,” (
North-Holland Pub. Co., Amsterdam
,
1976
), pp.
683
766
.
87.
M.
Praprotnik
,
D.
Janežič
, and
J.
Mavri
, “
Temperature dependence of water vibrational spectrum: A molecular dynamics simulation study
,”
J. Phys. Chem. A
108
,
11056
11062
(
2004
).
88.
J.
Horníček
,
P.
Kaprálová
, and
P.
Bouř
, “
Simulations of vibrational spectra from classical trajectories: Calibration with ab initio force fields
,”
J. Chem. Phys.
127
,
084502
(
2007
).
89.
A. P.
Sunda
,
A.
Mondal
, and
S.
Balasubramanian
, “
Atomistic simulations of ammonium-based protic ionic liquids: Steric effects on structure, low frequency vibrational modes and electrical conductivity
,”
Phys. Chem. Chem. Phys.
17
,
4625
4633
(
2015
).
90.
H.
Liu
and
E.
Maginn
, “
A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
,”
J. Chem. Phys.
135
,
124507
(
2011
).
91.
F.
Borghi
,
P.
Milani
, and
A.
Podestà
, “
Solid-like ordering of imidazolium-based ionic liquids at rough nanostructured oxidized silicon surfaces
,”
Langmuir
35
,
11881
11890
(
2019
).
92.
M.
Galluzzi
,
S.
Bovio
,
P.
Milani
, and
A.
Podestà
, “
Surface confinement induces the formation of solid-like insulating ionic liquid nanostructures
,”
J. Phys. Chem. C
122
,
7934
7944
(
2018
).
93.
S.
Bovio
,
A.
Podestà
,
C.
Lenardi
, and
P.
Milani
, “
Evidence of extended solidlike layering in [Bmim][NTf2] ionic liquid thin films at room-temperature
,”
J. Phys. Chem. B
113
,
6600
6603
(
2009
).
94.
J.
Comtet
,
A.
Niguès
,
V.
Kaiser
,
B.
Coasne
,
L.
Bocquet
, and
A.
Siria
, “
Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening
,”
Nat. Mater.
16
,
634
639
(
2017
).
95.
C.
Cruz
and
A.
Ciach
, “
Phase transitions and electrochemical properties of ionic liquids and ionic liquid—Solvent mixtures
,”
Molecules
26
,
3668
(
2021
).

Supplementary Material

You do not currently have access to this content.