Ionic liquids (ILs) are salts, composed of asymmetric cations and anions, typically existing as liquids at ambient temperatures. They have found widespread applications in energy storage devices, dye-sensitized solar cells, and sensors because of their high ionic conductivity and inherent thermal stability. However, measuring the conductivity of ILs by physical methods is time-consuming and expensive, whereas the use of computational screening and testing methods can be rapid and effective. In this study, we used experimentally measured and published data to construct a deep neural network capable of making rapid and accurate predictions of the conductivity of ILs. The neural network is trained on 406 unique and chemically diverse ILs. This model is one of the most chemically diverse conductivity prediction models to date and improves on previous studies that are constrained by the availability of data, the environmental conditions, or the IL base. Feature engineering techniques were employed to identify key chemo-structural characteristics that correlate positively or negatively with the ionic conductivity. These features are capable of being used as guidelines to design and synthesize new highly conductive ILs. This work shows the potential for machine-learning models to accelerate the rate of identification and testing of tailored, high-conductivity ILs.

1.
N. V.
Plechkova
and
K. R.
Seddon
,
Chem. Soc. Rev.
37
,
123
(
2008
).
2.
N.
Yamanaka
,
R.
Kawano
,
W.
Kubo
,
T.
Kitamura
,
Y.
Wada
,
M.
Watanabe
, and
S.
Yanagida
,
Chem. Commun.
2005
,
740
.
3.
B.
Garcia
,
S.
Lavallée
,
G.
Perron
,
C.
Michot
, and
M.
Armand
,
Electrochim. Acta
49
,
4583
(
2004
).
4.
E. G.
Yanes
,
S. R.
Gratz
,
M. J.
Baldwin
,
S. E.
Robison
, and
A. M.
Stalcup
,
Anal. Chem.
73
,
3838
(
2001
).
5.
C. A.
Zell
and
W.
Freyland
,
Langmuir
19
,
7445
(
2003
).
6.
C. W.
Scheeren
,
G.
Machado
,
J.
Dupont
,
P. F. P.
Fichtner
, and
S. R.
Texeira
,
Inorg. Chem.
42
,
4738
(
2003
).
7.
L.
He
,
W.
Zhang
,
L.
Zhao
,
X.
Liu
, and
S.
Jiang
,
J. Chromatogr. A
1007
,
39
(
2003
).
8.
Y.
Zhou
and
M.
Antonietti
,
J. Am. Chem. Soc.
125
,
14960
(
2003
).
9.
A. B.
McEwen
,
H. L.
Ngo
,
K.
LeCompte
, and
J. L.
Goldman
,
J. Electrochem. Soc.
146
,
1687
(
1999
).
10.
M. A.
Navarra
,
MRS Bull.
38
,
548
(
2013
).
11.
H.
Ohno
,
Electrochemical Aspects of Ionic Liquids
(
John Wiley & Sons
,
2005
), pp.
1
3
.
12.
Z.
Yang
and
W.
Pan
,
Enzyme Microb. Technol.
37
,
19
(
2005
).
13.
K.
Sharma
,
V.
Sharma
, and
S. S.
Sharma
,
Nanoscale Res. Lett.
13
(
1
),
381
(
2018
).
14.
L.
Gaines
and
R.
Cuenca
, Technical Report, Center for Transportation Research Argonne National Laboratory, 2000.
15.
C.
Arbizzani
,
G.
Gabrielli
, and
M.
Mastragostino
,
J. Power Sources
196
,
4801
(
2011
).
16.
R. D.
Rogers
,
ACS Symposium Series
(
American Chemical Society
,
2002
).
18.
D. R.
MacFarlane
,
N.
Tachikawa
,
M.
Forsyth
,
J. M.
Pringle
,
P. C.
Howlett
,
G. D.
Elliott
,
J. H.
Davis
,
M.
Watanabe
,
P.
Simon
, and
C. A.
Angell
,
Energy Environ. Sci.
7
,
232
(
2014
).
19.
R. F.
De Souza
,
J. C.
Padilha
,
R. S.
Gonçalves
, and
J.
Dupont
,
Electrochem. Commun.
5
,
728
(
2003
).
20.
M. J.
Earle
and
K. R.
Seddon
,
Pure Appl. Chem.
72
,
1391
(
2000
).
21.
M.-C.
Lin
,
M.
Gong
,
B.
Lu
,
Y.
Wu
,
D.-Y.
Wang
,
M.
Guan
,
M.
Angell
,
C.
Chen
,
J.
Yang
,
B.-J.
Hwang
 et al,
Nature
520
,
324
(
2015
).
22.
A.
Eftekhari
,
Energy Storage Mater.
9
,
47
(
2017
).
23.
S.
Denizalti
,
A. K.
Ali
,
Ç.
Ela
,
M.
Ekmekci
, and
S.
Erten-Ela
,
Chem. Phys. Lett.
691
,
373
(
2018
).
24.
D.
Wei
and
A.
Ivaska
,
Anal. Chim. Acta
607
,
126
(
2008
).
25.
A. K.
Burrell
,
R. E.
Del Sesto
,
S. N.
Baker
,
T. M.
McCleskey
, and
G. A.
Baker
,
Green Chem.
9
,
449
(
2007
).
26.
S. K.
Singh
and
A. W.
Savoy
,
J. Mol. Liq.
297
,
112038
(
2020
).
27.
R.
Ratti
,
Adv. Chem.
2014
,
729842
.
28.
R.
Ramprasad
,
R.
Batra
,
G.
Pilania
,
A.
Mannodi-Kanakkithodi
, and
C.
Kim
,
npj Comput. Mater.
3
,
54
(
2017
).
29.
G.
Pilania
,
A.
Mannodi-Kanakkithodi
,
B.
Uberuaga
,
R.
Ramprasad
,
J.
Gubernatis
, and
T.
Lookman
,
Sci. Rep.
6
,
19375
(
2016
).
30.
J.
Nilsson-Hallén
,
B.
Ahlström
,
M.
Marczewski
, and
P.
Johansson
,
Front. Chem.
7
,
126
(
2019
).
31.
Z. K.
Koi
,
W. Z. N.
Yahya
, and
K. A.
Kurnia
,
New J. Chem.
45
,
18584
(
2021
).
32.
I.
Baskin
,
A.
Epshtein
, and
Y.
Ein-Eli
,
J. Mol. Liq.
351
,
118616
(
2022
).
33.
34.
E.
Kianfar
,
M.
Shirshahi
,
F.
Kianfar
, and
F.
Kianfar
,
Silicon
10
,
2617
(
2018
).
35.
D. V.
Duong
,
H.-V.
Tran
,
S. K.
Pathirannahalage
,
S. J.
Brown
,
M.
Hassett
,
D.
Yalcin
,
N.
Meftahi
,
A.
Christofferson
,
T. L.
Greaves
, and
T. C.
Le
,
J. Chem. Phys.
156
,
154503
(
2022
).
36.
P.
Dhakal
and
J. K.
Shah
,
Fluid Phase Equilib.
549
,
113208
(
2021
).
37.
A.
Kazakov
,
J.
Magee
,
R.
Chirico
,
V.
Diky
,
K.
Kroenlein
,
C.
Muzny
, and
M.
Frenkel
, Ionic liquids database–ilthermo (v2.0),
2013
.
38.
R.
Batra
,
L.
Song
, and
R.
Ramprasad
,
Nat. Rev. Mater.
6
,
655
(
2021
).
39.
J. J.
Barron
and
C.
Ashton
, TSP report, 2005.
40.
J.
Vila
,
P.
Ginés
,
J. M.
Pico
,
C.
Franjo
,
E.
Jiménez
,
L. M.
Varela
, and
O.
Cabeza
,
Fluid Phase Equilib.
242
,
141
(
2006
).
41.
A.
Jha
,
A.
Chandrasekaran
,
C.
Kim
, and
R.
Ramprasad
,
Modell. Simul. Mater. Sci. Eng.
27
,
024002
(
2019
).
42.
M.
Pagano
and
K.
Gauvreau
,
Principles of Biostatistics
(
CRC Press
,
2018
).
43.
G.
Landrum
, RDKit: Open-Source Cheminformatics Software, Q2 (2006); available at https://www.rdkit.org/.
44.
K. T.
Nguyen
,
L. C.
Blum
,
R.
Van Deursen
, and
J.-L.
Reymond
,
ChemMedChem
4
,
1803
(
2009
).
45.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
,
J. Mach. Learn. Res.
12
,
2825
(
2011
).
46.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
,
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2019
), Vol. 32, pp.
8024
8035
.
47.
D. P.
Kingma
and
J.
Ba
, arXiv:1412.6980 (
2014
).
48.
M.
Galiński
,
A.
Lewandowski
, and
I.
Stępniak
,
Electrochim. Acta
51
,
5567
(
2006
).
49.
M. V.
Shcherbakov
,
A.
Brebels
,
N. L.
Shcherbakova
,
A. P.
Tyukov
,
T. A.
Janovsky
,
V. A.
Kamaev
 et al,
World Appl. Sci. J.
24
,
171
(
2013
).
50.
Y.
Kubota
and
Y.
Tominaga
,
Mater. Today Commun.
4
,
124
(
2015
).
51.
V.
Morizur
,
S.
Olivero
,
J. R.
Desmurs
,
P.
Knauth
, and
E.
Duñach
,
New J. Chem.
38
,
6193
(
2014
).
52.
M. H.
Matus
,
J.
Garza
, and
M.
Galván
,
J. Phys. Chem. B
110
,
1172
(
2006
).
53.
T.
Mukai
and
K.
Nishikawa
,
RSC Adv.
3
,
19952
(
2013
).
54.
K.
Tsunashima
,
Y.
Ono
, and
M.
Sugiya
,
Electrochim. Acta
56
,
4351
(
2011
).
55.
C. D.
Rodríguez-Fernández
,
E. L.
Lago
,
C.
Schröder
, and
L. M.
Varela
,
J. Mol. Liq.
346
,
117099
(
2022
).
56.
M.
Montanino
,
M.
Carewska
,
F.
Alessandrini
,
S.
Passerini
, and
G. B.
Appetecchi
,
Electrochim. Acta
57
,
153
(
2011
).
57.
S. T.
Schneebeli
,
M.
Kamenetska
,
Z.
Cheng
,
R.
Skouta
,
R. A.
Friesner
,
L.
Venkataraman
, and
R.
Breslow
,
J. Am. Chem. Soc.
133
,
2136
(
2011
).
58.
M.
Alsufyani
,
R. K.
Hallani
,
S.
Wang
,
M.
Xiao
,
X.
Ji
,
B. D.
Paulsen
,
K.
Xu
,
H.
Bristow
,
H.
Chen
,
X.
Chen
 et al,
J. Mater. Chem. C
8
,
15150
(
2020
).

Supplementary Material

You do not currently have access to this content.