Ionic liquids (ILs) are salts, composed of asymmetric cations and anions, typically existing as liquids at ambient temperatures. They have found widespread applications in energy storage devices, dye-sensitized solar cells, and sensors because of their high ionic conductivity and inherent thermal stability. However, measuring the conductivity of ILs by physical methods is time-consuming and expensive, whereas the use of computational screening and testing methods can be rapid and effective. In this study, we used experimentally measured and published data to construct a deep neural network capable of making rapid and accurate predictions of the conductivity of ILs. The neural network is trained on 406 unique and chemically diverse ILs. This model is one of the most chemically diverse conductivity prediction models to date and improves on previous studies that are constrained by the availability of data, the environmental conditions, or the IL base. Feature engineering techniques were employed to identify key chemo-structural characteristics that correlate positively or negatively with the ionic conductivity. These features are capable of being used as guidelines to design and synthesize new highly conductive ILs. This work shows the potential for machine-learning models to accelerate the rate of identification and testing of tailored, high-conductivity ILs.
Skip Nav Destination
Article navigation
7 June 2022
Research Article|
June 07 2022
Conductivity prediction model for ionic liquids using machine learning
Special Collection:
Chemical Design by Artificial Intelligence
R. Datta
;
R. Datta
1
The Galloway School
, Atlanta, Georgia 30327, USA
Search for other works by this author on:
R. Ramprasad
;
R. Ramprasad
2
The School of Materials Science and Engineering, Georgia Institute of Technology
, Atlanta, Georgia 30332, USA
Search for other works by this author on:
S. Venkatram
S. Venkatram
a)
2
The School of Materials Science and Engineering, Georgia Institute of Technology
, Atlanta, Georgia 30332, USA
a)Author to whom correspondence should be addressed: shruti.v93@gmail.com
Search for other works by this author on:
a)Author to whom correspondence should be addressed: shruti.v93@gmail.com
Note: This paper is part of the JCP Special Topic on Chemical Design by Artificial Intelligence.
J. Chem. Phys. 156, 214505 (2022)
Article history
Received:
February 26 2022
Accepted:
May 12 2022
Citation
R. Datta, R. Ramprasad, S. Venkatram; Conductivity prediction model for ionic liquids using machine learning. J. Chem. Phys. 7 June 2022; 156 (21): 214505. https://doi.org/10.1063/5.0089568
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00