Using a laser-induced local-heating experiment combined with temperature analysis, we observed the composition-dependent sign inversion of the Soret coefficient of SiO2 in binary silicate melts, which was successfully explained by a modified Kempers model used for describing the Soret effect in oxide melts. In particular, the diffusion of SiO2 to the cold side under a temperature gradient, which is an anomaly in silicate melts, was observed in the SiO2-poor compositions. The theoretical model indicates that the thermodynamic mixing properties of oxides, partial molar enthalpy of mixing, and partial molar volume are the dominant factors for determining the migration direction of the SiO2 component under a temperature gradient.
REFERENCES
1.
C.
Ludwig
, “Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösung
,” Sitz. Math. Naturwiss. Classe Kaiserichen. Akad. Wiss
.
20
, 539
(1856
).2.
C.
Soret
, “Sur I’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohéne don’t deux parties sont portées à des temperatures differentes
,” Arch. Sci. Phys. Nat.
2
, 48
–61
(1879
).3.
M.
Eslamian
and M. Z.
Saghir
, “A critical review of thermodiffusion models: Role and significance of the heat of transport and the activation energy of viscous flow
,” J. Non-Equilib. Thermodyn.
34
, 97
–131
(2009
).4.
M.
Eslamian
and M. Z.
Saghir
, “Microscopic study and modeling of thermodiffusion in binary associating mixtures
,” Phys. Rev. E
80
, 061201
(2009
).5.
P. A.
Artola
, B.
Rousseau
, and G.
Galliéro
, “A new model for thermal diffusion: Kinetic approach
,” J. Am. Chem. Soc.
130
, 10963
(2008
).6.
L. J. T. M.
Kempers
, “A thermodynamic theory of the Soret effect in a multicomponent liquid
,” J. Chem. Phys.
90
, 6541
–6548
(1989
).7.
L. J. T. M.
Kempers
, “A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid
,” J. Chem. Phys.
115
, 6330
–6341
(2001
).8.
S.
Chapman
and T. G.
Cowling
, The Mathematical Theory of Non-uniform Gases
, 3rd ed. (Cambridge University Press
, England
, 1970
), Chap. IX, pp. 149
–166
.9.
P.-A.
Artola
and B.
Rousseau
, “Isotopic Soret effect in ternary mixtures: Theoretical predictions and molecular simulations
,” J. Chem. Phys.
143
, 174503
(2015
).10.
D.
Walker
, C. E.
Lesher
, and J. F.
Hays
, “Soret separation of lunar liquid
,” in 12th: Proceedings of Lunar and Planetary Science
, 1981
, pp. 991
–999
.11.
D.
Walker
and S. E.
DeLong
, “Soret separation of mid-ocean ridge basalt magma
,” Contrib. Mineral. Petrol.
79
, 231
–240
(1982
).12.
C. E.
Lesher
and D.
Walker
, “Solution properties of silicate liquids from thermal diffusion experiments
,” Geochim. Cosmochim. Acta
50
, 1397
–1411
(1986
).13.
F. M.
Richter
, E. B.
Watson
, R. A.
Mendybaev
, F.-Z.
Teng
, and P. E.
Janney
, “Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion
,” Geochim. Cosmochim. Acta
72
, 206
–220
(2008
).14.
F. M.
Richter
, N.
Dauphas
, and F.-Z.
Teng
, “Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion
,” Chem. Geol.
258
, 92
–103
(2009
).15.
F.
Huang
, P.
Chakraborty
, C. C.
Lundstrom
, C.
Holmden
, J. J. G.
Glessner
, S. W.
Kieffer
, and C. E.
Lesher
, “Isotope fractionation in silicate melts by thermal diffusion
,” Nature
464
, 396
–400
(2010
).16.
G.
Dominguez
, G.
Wilkins
, and M. H.
Thiemens
, “The Soret effect and isotopic fractionation in high-temperature silicate melts
,” Nature
473
, 70
–73
(2011
).17.
D. J.
Lacks
, G.
Goel
, C. J.
Bopp
, J. A.
Van Orman
, C. E.
Lesher
, and C. C.
Lundstrom
, “Isotope fractionation by thermal diffusion in silicate melts
,” Phys. Rev. Lett.
108
, 065901
(2012
).18.
C.
Debuschewitz
and W.
Köhler
, “Molecular origin of thermal diffusion in benzene 1 cyclohexane mixtures
,” Phys. Rev. Lett.
87
, 055901
(2001
).19.
G.
Wittko
and W.
Köhler
, “Universal isotope effect in thermal diffusion of mixtures containing cyclohexane and cyclohexane-d12
,” J. Chem. Phys.
123
, 014506
(2005
).20.
T. T.
Fernandez
, M.
Sakakura
, S. M.
Eaton
, B.
Sotillo
, J.
Siegel
, J.
Solis
, Y.
Shimotsuma
, and K.
Miura
, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses
,” Prog. Mater. Sci.
94
, 68
–113
(2018
).21.
J.
Lv
, K.
Wang
, and G.
Cheng
, “3D waveguide element fabrication in Gorilla glass by an ultrafast laser
,” Appl. Opt.
59
, 8242
–8246
(2020
).22.
S.
Kanehira
, K.
Miura
, and K.
Hirao
, “Ion exchange in glass using femtosecond laser irradiation
,” Appl. Phys. Lett.
93
, 023112
(2008
).23.
M.
Shimizu
, K.
Miura
, M.
Sakakura
, M.
Nishi
, Y.
Shimotsuma
, S.
Kanehira
, T.
Nakaya
, and K.
Hirao
, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation
,” Appl. Phys. A
100
, 1001
–1005
(2010
).24.
M.
Shimizu
, M.
Sakakura
, S.
Kanehira
, M.
Nishi
, Y.
Shimotsuma
, K.
Hirao
, and K.
Miura
, “Formation mechanism of element distribution in glass under femtosecond laser irradiation
,” Opt. Lett.
36
, 2161
–2163
(2011
).25.
H. J. V.
Tyrrell
, Diffusion and Heat Flow in Liquids
, 3rd ed. (Butterworths
, 1961
), Chap. VIII, pp. 183
–229
.26.
M.
Shimizu
, T.
Fukuyo
, J.
Matsuoka
, K.
Nakashima
, K.
Sato
, T.
Kiyosawa
, M.
Nishi
, Y.
Shimotsuma
, and K.
Miura
, “Determination of thermodynamic and microscopic origins of the Soret effect in sodium silicate melts: Prediction of sign change of the Soret coefficient
,” J. Chem. Phys.
154
, 074501
(2021
).27.
M.
Shimizu
, J.
Matsuoka
, H.
Kato
, T.
Kato
, M.
Nishi
, H.
Visbal
, K.
Nagashima
, M.
Sakakura
, Y.
Shimotsuma
, H.
Itasaka
, K.
Hirao
, and K.
Miura
, “Role of partial molar enthalpy of oxides on Soret effect in high-temperature CaO–SiO2 melts
,” Sci. Rep.
8
, 15489
(2018
).28.
M.
Shimizu
, M.
Sakakura
, M.
Ohnishi
, M.
Yamaji
, Y.
Shimotsuma
, K.
Hirao
, and K.
Miura
, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates
,” Opt. Express
20
, 934
–940
(2012
).29.
A.
Vogel
, J.
Noack
, G.
Hüttman
, and G.
Paltauf
, “Mechanisms of femtosecond laser nanosurgery of cells and tissues
,” Appl. Phys. B
81
, 1015
–1047
(2005
).30.
A.
Royon
, Y.
Petit
, G.
Papon
, M.
Richardson
, and L.
Canioni
, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents
,” Opt. Mater. Express
1
, 866
–882
(2010
).31.
M.
Shimizu
, M.
Sakakura
, M.
Ohnishi
, Y.
Shimotsuma
, T.
Nakaya
, K.
Miura
, and K.
Hirao
, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses
,” J. Appl. Phys.
108
, 073533
(2010
).32.
Glass data sheet from Schott.
33.
H.
Mehling
, G.
Hautzinger
, O.
Nilsson
, J.
Fricke
, R.
Hofmann
, and O.
Hahn
, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model
,” Int. J. Thermophys.
19
, 941
–949
(1998
).34.
H.
Ohta
, H.
Shibata
, A.
Suzuki
, and Y.
Waseda
, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature
,” Rev. Sci. Instrum.
72
, 1899
–1903
(2001
).35.
N. P.
Bansal
and R. H.
Doremus
, Handbook of Glass Properties
(Academic Press Inc.
, 1986
), p. 57
.36.
P.
Richet
et al., “Configurational heat capacity and entropy of borosilicate melts
,” J. Non-Cryst. Solids
211
, 271
–280
(1997
).37.
E. N.
Plotnikov
and V. L.
Stolyarova
, “Calculations of the thermodynamic properties of glasses and melts in the Na2O–SiO2 and B2O3–SiO2 systems on the basis of the generalized lattice theory of associated solutions
,” Glass Phys. Chem.
31
, 763
–788
(2005
).38.
H.
Doweidar
, “Considerations on the structure and physical properties of B2O3–SiO2 and GeO2–SiO2 glasses
,” J. Non-Cryst. Solids
357
, 1665
–1670
(2011
).39.
M. M.
Shul'ts
, G. G.
Ivanov
, V. L.
Stolyarova
, and B. A.
Shakhmatkin
, “Thermodynamic properties of melts and glasses of B2O3-SiO2 systems
,” Fizika i Khimiya Stekla
12
, 285
–292
(1986
).40.
T. T.
Fernandez
, S.
Gross
, A.
Arriola
, K.
Privat
, and M. J.
Withford
, “Revisiting ultrafast laser inscribed waveguide formation in commercial alkali-free borosilicate glasses
,” Opt. Express
28
, 10153
–10164
(2020
).41.
T. T.
Fernandez
, S.
Gross
, K.
Privat
, B.
Johnston
, and M.
Withford
, “Designer glasses—Future of photonic device platforms
,” Adv. Funct. Mater.
32
, 2103103
(2022
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.