Despite great efforts over the past 50 years, the simulation of water still presents significant challenges and open questions. At room temperature and pressure, the collective molecular interactions and dynamics of water molecules may form local structural arrangements that are non-trivial to classify. Here, we employ a data-driven approach built on Smooth Overlap of Atomic Position (SOAP) that allows us to compare and classify how widely used classical models represent liquid water. Macroscopically, the obtained results are rationalized based on water thermodynamic observables. Microscopically, we directly observe how transient ice-like ordered environments may dynamically/statistically form in liquid water, even above freezing temperature, by comparing the SOAP spectra for different ice structures with those of the simulated liquid systems. This confirms recent ab initio-based calculations but also reveals how the emergence of ephemeral local ice-like environments in liquid water at room conditions can be captured by classical water models.

1.
F.
Frappart
, “
Water and life
,”
Nat. Geosci.
6
,
17
(
2013
).
2.
G.
Vladilo
and
A.
Hassanali
, “
Hydrogen bonds and life in the universe
,”
Life
8
,
1
(
2018
).
3.
P.
Ball
, “
Water—An enduring mystery
,”
Nature
452
,
291
292
(
2008
).
4.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
 et al, “
Water: A tale of two liquids
,”
Chem. Rev.
116
,
7463
7500
(
2016
).
5.
M.
Chaplin
, “
Water structure and science
,” https://water.lsbu.ac.uk/water/, retrieved April 2022.
6.
P.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L. A.
Näslund
,
T. K.
Hirsch
,
L.
Ojamäe
,
P.
Glatzel
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
The structure of the first coordination shell in liquid water
,”
Science
304
,
995
999
(
2004
).
7.
C.
Huang
,
K. T.
Wikfeldt
,
T.
Tokushima
,
D.
Nordlund
,
Y.
Harada
,
U.
Bergmann
,
M.
Niebuhr
,
T. M.
Weiss
,
Y.
Horikawa
,
M.
Leetmaa
 et al, “
The inhomogeneous structure of water at ambient conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15214
15218
(
2009
).
8.
A.
Nilsson
and
L. G. M.
Pettersson
, “
The structural origin of anomalous properties of liquid water
,”
Nat. Commun.
6
,
8998
(
2015
).
9.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
, “
Phase behaviour of metastable water
,”
Nature
360
,
324
328
(
1992
).
10.
S.
Fanetti
,
A.
Lapini
,
M.
Pagliai
,
M.
Citroni
,
M.
Di Donato
,
S.
Scandolo
,
R.
Righini
, and
R.
Bini
, “
Structure and dynamics of low-density and high-density liquid water at high pressure
,”
J. Phys. Chem. Lett.
5
,
235
240
(
2014
).
11.
N.
Ansari
,
R.
Dandekar
,
S.
Caravati
,
G. C.
Sosso
, and
A.
Hassanali
, “
High and low density patches in simulated liquid water
,”
J. Chem. Phys.
149
,
204507
(
2018
).
12.
J.
Niskanen
,
M.
Fondell
,
C. J.
Sahle
,
S.
Eckert
,
R. M.
Jay
,
K.
Gilmore
,
A.
Pietzsch
,
M.
Dantz
,
X.
Lu
,
D. E.
McNally
 et al, “
Compatibility of quantitative x-ray spectroscopy with continuous distribution models of water at ambient conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
4058
4063
(
2019
).
13.
C. G.
Salzmann
, “
Advances in the experimental exploration of water’s phase diagram
,”
J. Chem. Phys.
150
,
060901
(
2019
).
14.
S.
Pipolo
,
M.
Salanne
,
G.
Ferlat
,
S.
Klotz
,
A. M.
Saitta
, and
F.
Pietrucci
, “
Navigating at will on the water phase diagram
,”
Phys. Rev. Lett.
119
,
245701
(
2017
).
15.
A.
Reinhardt
and
B.
Cheng
, “
Quantum-mechanical exploration of the phase diagram of water
,”
Nat. Commun.
12
,
588
(
2021
).
16.
A.
Hassanali
,
M. K.
Prakash
,
H.
Eshet
, and
M.
Parrinello
, “
On the recombination of hydronium and hydroxide ions in water
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
20410
20415
(
2011
).
17.
A.
Hassanali
,
F.
Giberti
,
J.
Cuny
,
T. D.
Kühne
, and
M.
Parrinello
, “
Proton transfer through the water gossamer
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
13723
13728
(
2013
).
18.
A. A.
Hassanali
,
J.
Cuny
,
V.
Verdolino
, and
M.
Parrinello
, “
Aqueous solutions: State of the art in ab initio molecular dynamics
,”
Philos. Trans. R. Soc., A
372
,
20120482
(
2014
).
19.
F.
Muniz-Miranda
,
M.
Pagliai
,
G.
Cardini
, and
R.
Righini
, “
Bifurcated hydrogen bond in lithium nitrate trihydrate probed by ab initio molecular dynamics
,”
J. Phys. Chem. A
116
,
2147
2153
(
2012
).
20.
P.
Gasparotto
,
A. A.
Hassanali
, and
M.
Ceriotti
, “
Probing defects and correlations in the hydrogen-bond network of ab initio water
,”
J. Chem. Theory Comput.
12
,
1953
1964
(
2016
).
21.
M.
Ceriotti
,
J.
Cuny
,
M.
Parrinello
, and
D. E.
Manolopoulos
, “
Nuclear quantum effects and hydrogen bond fluctuations in water
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
15591
15596
(
2013
).
22.
M.
Machida
,
K.
Kato
, and
M.
Shiga
, “
Nuclear quantum effects of light and heavy water studied by all-electron first principles path integral simulations
,”
J. Chem. Phys.
148
,
102324
(
2018
).
23.
F.
Giberti
,
A. A.
Hassanali
,
M.
Ceriotti
, and
M.
Parrinello
, “
The role of quantum effects on structural and electronic fluctuations in neat and charged water
,”
J. Phys. Chem. B
118
,
13226
13235
(
2014
).
24.
J.
Kessler
,
H.
Elgabarty
,
T.
Spura
,
K.
Karhan
,
P.
Partovi-Azar
,
A. A.
Hassanali
, and
T. D.
Kühne
, “
Structure and dynamics of the instantaneous water/vapor interface revisited by path-integral and ab initio molecular dynamics simulations
,”
J. Phys. Chem. B
119
,
10079
10086
(
2015
).
25.
G. C.
Sosso
,
S.
Caravati
,
G.
Rotskoff
,
S.
Vaikuntanathan
, and
A.
Hassanali
, “
On the role of nonspherical cavities in short length-scale density fluctuations in water
,”
J. Phys. Chem. A
121
,
370
380
(
2017
).
26.
R.
Dandekar
and
A. A.
Hassanali
, “
Hierarchical lattice models of hydrogen-bond networks in water
,”
Phys. Rev. E
97
,
062113
(
2018
).
27.
M.
Fitzner
,
G. C.
Sosso
,
S. J.
Cox
, and
A.
Michaelides
, “
Ice is born in low-mobility regions of supercooled liquid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
2009
2014
(
2019
).
28.
N.
Ansari
,
B.
Onat
,
G. C.
Sosso
, and
A.
Hassanali
, “
Insights into the emerging networks of voids in simulated supercooled water
,”
J. Phys. Chem. B
124
,
2180
2190
(
2020
).
29.
R.
Hu
,
C.
Zhang
,
X.
Zhang
, and
L.
Yang
, “
Research status of supercooled water ice making: A review
,”
J. Mol. Liq.
347
,
118334
(
2022
).
30.
P. H.
Handle
,
T.
Loerting
, and
F.
Sciortino
, “
Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man’s land
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
13336
13344
(
2017
).
31.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, “
Interaction models for water in relation to protein hydration
,” in
Intermolecular Forces
(
Springer
,
1981
), pp.
331
342
.
32.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
33.
C.
Vega
,
J. L. F.
Abascal
,
E.
Sanz
,
L. G.
MacDowell
, and
C.
McBride
, “
Can simple models describe the phase diagram of water?
,”
J. Phys.: Condens. Matter
17
,
S3283
(
2005
).
34.
J. L. F.
Abascal
and
C.
Vega
, “
Dipole-quadrupole force ratios determine the ability of potential models to describe the phase diagram of water
,”
Phys. Rev. Lett.
98
,
237801
(
2007
).
35.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
36.
B.
Monserrat
,
J. G.
Brandenburg
,
E. A.
Engel
, and
B.
Cheng
, “
Liquid water contains the building blocks of diverse ice phases
,”
Nat. Commun.
11
,
5757
(
2020
).
37.
R.
Capelli
,
A.
Gardin
,
C.
Empereur-mot
,
G.
Doni
, and
G. M.
Pavan
, “
A data-driven dimensionality reduction approach to compare and classify lipid force fields
,”
J. Phys. Chem. B
125
,
7785
7796
(
2021
).
38.
P.
Gasparotto
,
D.
Bochicchio
,
M.
Ceriotti
, and
G. M.
Pavan
, “
Identifying and tracking defects in dynamic supramolecular polymers
,”
J. Phys. Chem. B
124
,
589
599
(
2020
).
39.
T.
Bian
,
A.
Gardin
,
J.
Gemen
,
L.
Houben
,
C.
Perego
,
B.
Lee
,
N.
Elad
,
Z.
Chu
,
G. M.
Pavan
, and
R.
Klajn
, “
Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures
,”
Nat. Chem.
13
,
940
949
(
2021
).
40.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
41.
K.
Takemura
and
A.
Kitao
, “
Water model tuning for improved reproduction of rotational diffusion and NMR spectral density
,”
J. Phys. Chem. B
116
,
6279
6287
(
2012
).
42.
L.-P.
Wang
,
T. J.
Martinez
, and
V. S.
Pande
, “
Building force fields: An automatic, systematic, and reproducible approach
,”
J. Phys. Chem. Lett.
5
,
1885
1891
(
2014
).
43.
S.
Izadi
and
A. V.
Onufriev
, “
Accuracy limit of rigid 3-point water models
,”
J. Chem. Phys.
145
,
074501
(
2016
).
44.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
, “
Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew
,”
J. Chem. Phys.
120
,
9665
9678
(
2004
).
45.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
46.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
47.
R.
Fuentes-Azcatl
and
J.
Alejandre
, “
Non-polarizable force field of water based on the dielectric constant: TIP4P/ɛ
,”
J. Phys. Chem. B
118
,
1263
1272
(
2014
).
48.
S.
Izadi
,
R.
Anandakrishnan
, and
A. V.
Onufriev
, “
Building water models: A different approach
,”
J. Phys. Chem. Lett.
5
,
3863
3871
(
2014
).
49.
M. W.
Mahoney
and
W. L.
Jorgensen
, “
A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions
,”
J. Chem. Phys.
112
,
8910
8922
(
2000
).
50.
S. W.
Rick
, “
A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums
,”
J. Chem. Phys.
120
,
6085
6093
(
2004
).
51.
Y.
Khalak
,
B.
Baumeier
, and
M.
Karttunen
, “
Improved general-purpose five-point model for water: TIP5P/2018
,”
J. Chem. Phys.
149
,
224507
(
2018
).
52.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2014
).
53.
D. P.
Fernández
,
A. R. H.
Goodwin
,
E. W.
Lemmon
,
J. M. H.
Levelt Sengers
, and
R. C.
Williams
, “
A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Hückel coefficients
,”
J. Phys. Chem. Ref. Data
26
,
1125
1166
(
1997
).
54.
L. B.
Skinner
,
C.
Huang
,
D.
Schlesinger
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
C. J.
Benmore
, “
Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range
,”
J. Chem. Phys.
138
,
074506
(
2013
).
55.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
56.
S.
De
,
A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
, “
Comparing molecules and solids across structural and alchemical space
,”
Phys. Chem. Chem. Phys.
18
,
13754
13769
(
2016
).
57.
J. B.
Kruskal
, “
Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
,”
Psychometrika
29
,
1
27
(
1964
).
58.
E. A.
Engel
,
A.
Anelli
,
M.
Ceriotti
,
C. J.
Pickard
, and
R. J.
Needs
, “
Mapping uncharted territory in ice from zeolite networks to ice structures
,”
Nat. Commun.
9
,
2173
(
2018
).
59.
C. G.
Salzmann
,
P. G.
Radaelli
,
E.
Mayer
, and
J. L.
Finney
, “
Ice XV: A new thermodynamically stable phase of ice
,”
Phys. Rev. Lett.
103
,
105701
(
2009
).
60.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
61.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
62.
B.
Cheng
,
E. A.
Engel
,
J.
Behler
,
C.
Dellago
, and
M.
Ceriotti
, “
Ab initio thermodynamics of liquid and solid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
1110
1115
(
2019
).
63.
J. R.
Scherer
,
M. K.
Go
, and
S.
Kint
, “
Raman spectra and structure of water from −10 to 90.deg.
,”
J. Phys. Chem.
78
,
1304
1313
(
1974
).
64.
Y.
Maréchal
, “
The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data
,”
J. Mol. Struct.
1004
,
146
155
(
2011
).
65.
S. P.
Kadaoluwa Pathirannahalage
,
N.
Meftahi
,
A.
Elbourne
,
A. C.
Weiss
,
C. F.
McConville
,
A.
Padua
,
D. A.
Winkler
,
M. C.
Gomes
,
T. L.
Greaves
,
Q. A.
Besford
 et al, “
A systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations
,”
J. Chem. Inf. Model
61
(
9
),
4521
4536
(
2021
).
66.
B.
Cheng
,
R.-R.
Griffiths
,
S.
Wengert
,
C.
Kunkel
,
T.
Stenczel
,
B.
Zhu
,
V. L.
Deringer
,
N.
Bernstein
,
J. T.
Margraf
,
K.
Reuter
 et al, “
Mapping materials and molecules
,”
Acc. Chem. Res.
53
,
1981
1991
(
2020
).
67.
A.
Offei-Danso
,
A.
Hassanali
, and
A.
Rodriguez
, “
High dimensional fluctuations in liquid water: Combining chemical intuition with unsupervised learning
,” arXiv:2112.11894 (
2021
).
68.
G.
Camisasca
,
D.
Schlesinger
,
I.
Zhovtobriukh
,
G.
Pitsevich
, and
L. G. M.
Pettersson
, “
A proposal for the structure of high and low-density fluctuations in liquid water
,”
J. Chem. Phys.
151
,
034508
(
2019
).
69.
G. E.
Walrafen
,
W.-H.
Yang
, and
Y. C.
Chu
, “
Raman evidence for the clathrate-like structure of highly supercooled water
,” in
Supercooled Liquids
, ACS Symposium Series Vol. 676 (
American Chemical Society
,
1997
), pp.
287
308
.
70.
V.
Rizzi
,
L.
Bonati
,
N.
Ansari
, and
M.
Parrinello
, “
The role of water in host-guest interaction
,”
Nat. Commun.
12
,
93
(
2021
).
71.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
72.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1
,
19
25
(
2015
).
73.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
74.
M.
Bernetti
and
G.
Bussi
, “
Pressure control using stochastic cell rescaling
,”
J. Chem. Phys.
153
,
114107
(
2020
).
75.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
76.
M. R.
Shirts
,
D. L.
Mobley
,
J. D.
Chodera
, and
V. S.
Pande
, “
Accurate and efficient corrections for missing dispersion interactions in molecular simulations
,”
J. Phys. Chem. B
111
,
13052
13063
(
2007
).
77.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
78.
M.
Bonomi
,
G.
Bussi
,
C.
Camilloni
,
G. A.
Tribello
,
P.
Banáš
,
A.
Barducci
,
M.
Bernetti
,
P. G.
Bolhuis
,
S.
Bottaro
,
D.
Branduardi
,
R.
Capelli
,
P.
Carloni
,
M.
Ceriotti
,
A.
Cesari
,
H.
Chen
,
W.
Chen
,
F.
Colizzi
,
S.
De
,
M.
De La Pierre
,
D.
Donadio
,
V.
Drobot
,
B.
Ensing
,
A. L.
Ferguson
,
M.
Filizola
,
J. S.
Fraser
,
H.
Fu
,
P.
Gasparotto
,
F. L.
Gervasio
,
F.
Giberti
,
A.
Gil-Ley
,
T.
Giorgino
,
G. T.
Heller
,
G. M.
Hocky
,
M.
Iannuzzi
,
M.
Invernizzi
,
K. E.
Jelfs
,
A.
Jussupow
,
E.
Kirilin
,
A.
Laio
,
V.
Limongelli
,
K.
Lindorff-Larsen
,
T.
Löhr
,
F.
Marinelli
,
L.
Martin-Samos
,
M.
Masetti
,
R.
Meyer
,
A.
Michaelides
,
C.
Molteni
,
T.
Morishita
,
M.
Nava
,
C.
Paissoni
,
E.
Papaleo
,
M.
Parrinello
,
J.
Pfaendtner
,
P.
Piaggi
,
G.
Piccini
,
A.
Pietropaolo
,
F.
Pietrucci
,
S.
Pipolo
,
D.
Provasi
,
D.
Quigley
,
P.
Raiteri
,
S.
Raniolo
,
J.
Rydzewski
,
M.
Salvalaglio
,
G. C.
Sosso
,
V.
Spiwok
,
J.
Šponer
,
D. W. H.
Swenson
,
P.
Tiwary
,
O.
Valsson
,
M.
Vendruscolo
,
G. A.
Voth
, and
A.
White
, “
Promoting transparency and reproducibility in enhanced molecular simulations
,”
Nat. Methods
16
,
670
673
(
2019
).
79.
L.
Himanen
,
M. O. J.
Jäger
,
E. V.
Morooka
,
F.
Federici Canova
,
Y. S.
Ranawat
,
D. Z.
Gao
,
P.
Rinke
, and
A. S.
Foster
, “
DScribe: Library of descriptors for machine learning in materials science
,”
Comput. Phys. Commun.
247
,
106949
(
2020
).

Supplementary Material

You do not currently have access to this content.