Despite decades of intense research, whether the transformation of supercooled liquids into glass is a kinetic phenomenon or a thermodynamic phase transition remains unknown. Here, we analyzed optical microscopy experiments on 2D binary colloidal glass-forming liquids and investigated the structural links of a prominent kinetic theory of glass transition. We examined a possible structural origin for localized excitations, which are building blocks of the dynamical facilitation theory—a purely kinetic approach for the glass transition. To accomplish this, we utilize machine learning methods to identify a structural order parameter termed “softness” that has been found to be correlated with reorganization events in supercooled liquids. Both excitations and softness qualitatively capture the dynamical slowdown on approaching the glass transition and motivated us to explore spatial and temporal correlations between them. Our results show that excitations predominantly occur in regions with high softness and the appearance of these high softness regions precedes excitations, thus suggesting a causal connection between them. Thus, unifying dynamical and thermodynamical theories into a single structure-based framework may provide a route to understand the glass transition.

1.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
(
2011
).
2.
S.
Gokhale
,
A. K.
Sood
, and
R.
Ganapathy
, “
Deconstructing the glass transition through critical experiments on colloids
,”
Adv. Phys.
65
,
363
453
(
2016
).
3.
T. R.
Kirkpatrick
,
D.
Thirumalai
, and
P. G.
Wolynes
, “
Scaling concepts for the dynamics of viscous liquids near an ideal glassy state
,”
Phys. Rev. A
40
,
1045
(
1989
).
4.
V.
Lubchenko
and
P. G.
Wolynes
, “
Theory of structural glasses and supercooled liquids
,”
Annu. Rev. Phys. Chem.
58
,
235
266
(
2007
).
5.
D.
Chandler
and
J. P.
Garrahan
, “
Dynamics on the way to forming glass: Bubbles in space-time
,”
Annu. Rev. Phys. Chem.
61
,
191
217
(
2010
).
6.
A. S.
Keys
,
L. O.
Hedges
,
J. P.
Garrahan
,
S. C.
Glotzer
, and
D.
Chandler
, “
Excitations are localized and relaxation is hierarchical in glass-forming liquids
,”
Phys. Rev. X
1
,
021013
(
2011
).
7.
K.
Hima Nagamanasa
,
S.
Gokhale
,
A. K.
Sood
, and
R.
Ganapathy
, “
Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former
,”
Nat. Phys.
11
,
403
408
(
2015
).
8.
D.
Ganapathi
,
K. H.
Nagamanasa
,
A. K.
Sood
, and
R.
Ganapathy
, “
Measurements of growing surface tension of amorphous–amorphous interfaces on approaching the colloidal glass transition
,”
Nat. Commun.
9
,
397
(
2018
).
9.
S.
Gokhale
,
K.
Hima Nagamanasa
,
R.
Ganapathy
, and
A. K.
Sood
, “
Growing dynamical facilitation on approaching the random pinning colloidal glass transition
,”
Nat. Commun.
5
,
4685
(
2014
).
10.
W.
Kob
,
S.
Roldán-Vargas
, and
L.
Berthier
, “
Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids
,”
Nat. Phys.
8
,
164
167
(
2012
).
11.
J. D.
Stevenson
,
J.
Schmalian
, and
P. G.
Wolynes
, “
The shapes of cooperatively rearranging regions in glass-forming liquids
,”
Nat. Phys.
2
,
268
274
(
2006
).
12.
J. D.
Stevenson
and
P. G.
Wolynes
, “
A universal origin for secondary relaxations in supercooled liquids and structural glasses
,”
Nat. Phys.
6
,
62
68
(
2010
).
13.
C. K.
Mishra
and
R.
Ganapathy
, “
Shape of dynamical heterogeneities and fractional Stokes-Einstein and Stokes-Einstein-Debye relations in quasi-two-dimensional suspensions of colloidal ellipsoids
,”
Phys. Rev. Lett.
114
,
198302
(
2015
).
14.
C.-T.
Yip
,
M.
Isobe
,
C.-H.
Chan
,
S.
Ren
,
K.-P.
Wong
,
Q.
Huo
,
C.-S.
Lee
,
Y.-H.
Tsang
,
Y.
Han
, and
C.-H.
Lam
, “
Direct evidence of void-induced structural relaxations in colloidal glass formers
,”
Phys. Rev. Lett.
125
,
258001
(
2020
).
15.
L.
Ortlieb
,
T. S.
Ingebrigtsen
,
J. E.
Hallett
,
F.
Turci
, and
C. P.
Royall
, “
Relaxation mechanisms in supercooled liquids past the mode coupling crossover: Cooperatively rearranging regions vs excitations
,” arXiv:2103.08060v1 (
2021
).
16.
L.
Berthier
and
R. L.
Jack
, “
Structure and dynamics of glass formers: Predictability at large length scales
,”
Phys. Rev. E
76
,
041509
(
2007
).
17.
G.
Biroli
,
J.-P.
Bouchaud
,
A.
Cavagna
,
T. S.
Grigera
, and
P.
Verrocchio
, “
Thermodynamic signature of growing amorphous order in glass-forming liquids
,”
Nat. Phys.
4
,
771
775
(
2008
).
18.
M. R.
Hasyim
and
K. K.
Mandadapu
, “
A theory of localized excitations in supercooled liquids
,”
J. Chem. Phys.
155
,
044504
(
2021
); arXiv:2103.03015v3.
19.
S. S.
Schoenholz
,
E. D.
Cubuk
,
D. M.
Sussman
,
E.
Kaxiras
, and
A. J.
Liu
, “
A structural approach to relaxation in glassy liquids
,”
Nat. Phys.
12
,
469
471
(
2016
).
20.
X.
Ma
,
Z. S.
Davidson
,
T.
Still
,
R. J. S.
Ivancic
,
S. S.
Schoenholz
,
A. J.
Liu
, and
A. G.
Yodh
, “
Heterogeneous activation, local structure, and softness in supercooled colloidal liquids
,”
Phys. Rev. Lett.
122
,
028001
(
2019
).
21.
D.
Ganapathi
,
D.
Chakrabarti
,
A. K.
Sood
, and
R.
Ganapathy
, “
Structure determines where crystallization occurs in a soft colloidal glass
,”
Nat. Phys.
17
,
114
120
(
2021
).
22.
C.-C.
Chang
and
C.-J.
Lin
,
ACM Trans. Intell. Syst. Technol.
2
,
1
(
2011
).
23.
R.
Pinchaipat
,
M.
Campo
,
F.
Turci
,
J. E.
Hallett
,
T.
Speck
, and
C. P.
Royall
, “
Experimental evidence for a structural-dynamical transition in trajectory space
,”
Phys. Rev. Lett.
119
,
028004
(
2017
).
24.
F.
Turci
,
C. P.
Royall
, and
T.
Speck
, “
Nonequilibrium phase transition in an atomistic glassformer: The connection to thermodynamics
,”
Phys. Rev. X
7
,
031028
(
2017
).
25.
C. P.
Royall
,
F.
Turci
, and
T.
Speck
, “
Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics
,”
J. Chem. Phys.
153
,
090901
(
2020
).

Supplementary Material

You do not currently have access to this content.