Energy-related descriptors in machine learning are a promising strategy to predict adsorption properties of metal–organic frameworks (MOFs) in the low-pressure regime. Interactions between hosts and guests in these systems are typically expressed as a sum of dispersion and electrostatic potentials. The energy landscape of dispersion potentials plays a crucial role in defining Henry’s constants for simple probe molecules in MOFs. To incorporate more information about this energy landscape, we introduce the Gaussian-approximated Lennard-Jones (GALJ) potential, which fits pairwise Lennard-Jones potentials with multiple Gaussians by varying their heights and widths. The GALJ approach is capable of replicating information that can be obtained from the original LJ potentials and enables efficient development of Gaussian integral (GI) descriptors that account for spatial correlations in the dispersion energy environment. GI descriptors would be computationally inconvenient to compute using the usual direct evaluation of the dispersion potential energy surface. We show that these new GI descriptors lead to improvement in ML predictions of Henry’s constants for a diverse set of adsorbates in MOFs compared to previous approaches to this task.

1.
P. G.
Boyd
,
A.
Chidambaram
,
E.
García-Díez
,
C. P.
Ireland
,
T. D.
Daff
,
R.
Bounds
,
A.
Gładysiak
,
P.
Schouwink
,
S. M.
Moosavi
,
M. M.
Maroto-Valer
,
J. A.
Reimer
,
J. A. R.
Navarro
,
T. K.
Woo
,
S.
Garcia
,
K. C.
Stylianou
, and
B.
Smit
, “
Data-driven design of metal–organic frameworks for wet flue gas CO2 capture
,”
Nature
576
(
7786
),
253
256
(
2019
).
2.
Y. G.
Chung
,
D. A.
Gómez-Gualdrón
,
P.
Li
,
K. T.
Leperi
,
P.
Deria
,
H.
Zhang
,
N. A.
Vermeulen
,
J. F.
Stoddart
,
F.
You
,
J. T.
Hupp
,
O. K.
Farha
, and
R. Q.
Snurr
, “
In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm
,”
Sci. Adv.
2
(
10
),
e1600909
(
2016
).
3.
S.
Lee
,
B.
Kim
,
H.
Cho
,
H.
Lee
,
S. Y.
Lee
,
E. S.
Cho
, and
J.
Kim
, “
Computational screening of trillions of metal–organic frameworks for high-performance methane storage
,”
ACS Appl. Mater. Interfaces
13
(
20
),
23647
23654
(
2021
).
4.
C. M.
Simon
,
R.
Mercado
,
S. K.
Schnell
,
B.
Smit
, and
M.
Haranczyk
, “
What are the best materials to separate a xenon/krypton mixture?
,”
Chem. Mater.
27
(
12
),
4459
4475
(
2015
).
5.
Y. J.
Colón
and
R. Q.
Snurr
, “
High-throughput computational screening of metal–organic frameworks
,”
Chem. Soc. Rev.
43
(
16
),
5735
5749
(
2014
).
6.
M.
Fernandez
,
N. R.
Trefiak
, and
T. K.
Woo
, “
Atomic property weighted radial distribution functions descriptors of metal–organic frameworks for the prediction of gas uptake capacity
,”
J. Phys. Chem. C
117
(
27
),
14095
14105
(
2013
).
7.
R.
Anderson
,
A.
Biong
, and
D. A.
Gómez-Gualdrón
, “
Adsorption isotherm predictions for multiple molecules in MOFs using the same deep learning model
,”
J. Chem. Theory Comput.
16
(
2
),
1271
1283
(
2020
).
8.
M.
Fernandez
and
A. S.
Barnard
, “
Geometrical properties can predict CO2 and N2 adsorption performance of metal–organic frameworks (MOFs) at low pressure
,”
ACS Comb. Sci.
18
(
5
),
243
252
(
2016
).
9.
M.
Fernandez
,
T. K.
Woo
,
C. E.
Wilmer
, and
R. Q.
Snurr
, “
Large-scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks
,”
J. Phys. Chem. C
117
(
15
),
7681
7689
(
2013
).
10.
G. S.
Fanourgakis
,
K.
Gkagkas
,
E.
Tylianakis
,
E.
Klontzas
, and
G.
Froudakis
, “
A robust machine learning algorithm for the prediction of methane adsorption in nanoporous materials
,”
J. Phys. Chem. A
123
(
28
),
6080
6087
(
2019
).
11.
M.
Pardakhti
,
P.
Nanda
, and
R.
Srivastava
, “
Impact of chemical features on methane adsorption by porous materials at varying pressures
,”
J. Phys. Chem. C
124
(
8
),
4534
4544
(
2020
).
12.
A. S.
Krishnapriyan
,
M.
Haranczyk
, and
D.
Morozov
, “
Topological descriptors help predict guest adsorption in nanoporous materials
,”
J. Phys. Chem. C
124
(
17
),
9360
9368
(
2020
).
13.
X.
Yu
,
S.
Choi
,
D.
Tang
,
A. J.
Medford
, and
D. S.
Sholl
, “
Efficient models for predicting temperature-dependent Henry’s constants and adsorption selectivities for diverse collections of molecules in metal–organic frameworks
,”
J. Phys. Chem. C
125
(
32
),
18046
18057
(
2021
).
14.
K. S.
Walton
and
D. S.
Sholl
, “
Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory
,”
AIChE J.
61
(
9
),
2757
2762
(
2015
).
15.
F.
Gharagheizi
,
D.
Tang
, and
D. S.
Sholl
, “
Selecting adsorbents to separate diverse near-azeotropic chemicals
,”
J. Phys. Chem. C
124
(
6
),
3664
3670
(
2020
).
16.
D.
Tang
,
F.
Gharagheizi
, and
D. S.
Sholl
, “
Adsorption-based separation of near-azeotropic mixtures—A challenging example for high-throughput development of adsorbents
,”
J. Phys. Chem. B
125
(
3
),
926
936
(
2021
).
17.
B. J.
Bucior
,
N. S.
Bobbitt
,
T.
Islamoglu
,
S.
Goswami
,
A.
Gopalan
,
T.
Yildirim
,
O. K.
Farha
,
N.
Bagheri
, and
R. Q.
Snurr
, “
Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks
,”
Mol. Syst. Des. Eng.
4
(
1
),
162
174
(
2019
).
18.
Z.
Li
,
B. J.
Bucior
,
H.
Chen
,
M.
Haranczyk
,
J. I.
Siepmann
, and
R. Q.
Snurr
, “
Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: Application to short alkanes and Xe/Kr mixtures
,”
J. Chem. Phys.
155
(
1
),
014701
(
2021
).
19.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
, “
RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials
,”
Mol. Simul.
42
(
2
),
81
101
(
2016
).
20.
J. E.
Lennard-Jones
, “
Cohesion
,”
Proc. Phys. Soc.
43
(
5
),
461
482
(
1931
).
21.
H. A.
Lorentz
, “
Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase
,”
Ann. Phys.
248
(
1
),
127
136
(
1881
).
22.
D.
Tang
,
Y.
Wu
,
R. J.
Verploegh
, and
D. S.
Sholl
, “
Efficiently exploring adsorption space to identify privileged adsorbents for chemical separations of a diverse set of molecules
,”
ChemSusChem
11
(
9
),
1567
1575
(
2018
).
23.
D.
Tang
,
G.
Kupgan
,
C. M.
Colina
, and
D. S.
Sholl
, “
Rapid prediction of adsorption isotherms of a diverse range of molecules in hyper-cross-linked polymers
,”
J. Phys. Chem. C
123
(
29
),
17884
17893
(
2019
).
24.
D. M.
Anstine
,
D.
Tang
,
D. S.
Sholl
, and
C. M.
Colina
, “
Adsorption space for microporous polymers with diverse adsorbate species
,”
npj Comput. Mater.
7
(
1
),
53
(
2021
).
25.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
(
25
),
10024
10035
(
1992
).
26.
Z.
Qiao
,
K.
Zhang
, and
J.
Jiang
, “
In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO2 separation
,”
J. Mater. Chem. A
4
(
6
),
2105
2114
(
2016
).
27.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
(
4
),
308
313
(
1965
).
28.
E. J.
Maginn
,
A. T.
Bell
, and
D. N.
Theodorou
, “
Sorption thermodynamics, siting, and conformation of long n-alkanes in silicalite as predicted by configurational-bias Monte Carlo integration
,”
J. Phys. Chem.
99
(
7
),
2057
2079
(
1995
).
29.
L.
Sarkisov
, “
Toward rational design of metal–organic frameworks for sensing applications: Efficient calculation of adsorption characteristics in zero loading regime
,”
J. Phys. Chem. C
116
(
4
),
3025
3033
(
2012
).
30.
X.
Lei
and
A. J.
Medford
, “
A universal framework for featurization of atomistic systems
,” arXiv:2102.02390 [physics] (
2021
).
31.
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
, edited by
W. M.
Haynes
,
D. R.
Lide
, and
T. J.
Bruno
97th ed. (
CRC Press
,
Boca Raton, Florida
,
2016
) 2016th–2017th.
32.
J.
Applequist
, “
Maxwell-Cartesian spherical harmonics in multipole potentials and atomic orbitals
,”
Theor. Chem. Acc.
107
(
2
),
103
115
(
2002
).
33.
X.
Lei
and
A. J.
Medford
, “
Design and analysis of machine learning exchange-correlation functionals via rotationally invariant convolutional descriptors
,”
Phys. Rev. Mater.
3
(
6
),
063801
(
2019
).

Supplementary Material

You do not currently have access to this content.