Standard quantum master equation techniques, such as the Redfield or Lindblad equations, are perturbative to second order in the microscopic system–reservoir coupling parameter λ. As a result, the characteristics of dissipative systems, which are beyond second order in λ, are not captured by such tools. Moreover, if the leading order in the studied effect is higher-than-quadratic in λ, a second-order description fundamentally fails even at weak coupling. Here, using the reaction coordinate (RC) quantum master equation framework, we are able to investigate and classify higher-than-second-order transport mechanisms. This technique, which relies on the redefinition of the system–environment boundary, allows for the effects of system–bath coupling to be included to high orders. We study steady-state heat current beyond second-order in two models: The generalized spin-boson model with non-commuting system–bath operators and a three-level ladder system. In the latter model, heat enters in one transition and is extracted from a different one. Crucially, we identify two transport pathways: (i) System’s current, where heat conduction is mediated by transitions in the system, with the heat current scaling as jqλ2 to the lowest order in λ. (ii) Inter-bath current, with the thermal baths directly exchanging energy between them, facilitated by the bridging quantum system. To the lowest order in λ, this current scales as jqλ4. These mechanisms are uncovered and examined using numerical and analytical tools. We contend that the RC mapping brings, already at the level of the mapped Hamiltonian, much insight into transport characteristics.

1.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
Singapore
,
1993
).
2.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems
(
Oxford University Press
,
Oxford, UK
,
2006
).
3.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Oxford, UK
,
2007
).
4.
S.
Vinjanampathy
and
J.
Anders
, “
Quantum thermodynamics
,”
Contemp. Phys.
57
,
545
(
2016
).
5.
J.
Goold
,
M.
Huber
,
A.
Riera
,
L.
del Rio
, and
P.
Skrzypczyk
, “
The role of quantum information in thermodynamics—A topical review
,”
J. Phys. A: Math. Theor.
49
,
143001
(
2016
).
6.
R.
Kosloff
, “
Quantum thermodynamics: A dynamical viewpoint
,”
Entropy
15
,
2100
(
2013
).
7.
A. S.
Trushechkin
,
M.
Merkli
,
J. D.
Cresser
, and
J.
Anders
, “
Open quantum system dynamics and the mean force Gibbs state
,”
AVS Quantum Sci.
4
,
012301
(
2022
).
8.
D.
Segal
, “
Heat flow in nonlinear molecular junctions: Master equation analysis
,”
Phys. Rev. B
73
,
205415
(
2006
).
9.

To the lowest order captured by the Redfield equation,8 the heat current is linear in the spectral density function J(ω). Since this function is quadratic in the system-bath coupling energy λ, the Redfield-level heat current is quadratic in λ.

10.
A.
Nazir
and
G.
Schaller
, “
The reaction coordinate mapping in quantum thermodynamics
,” in
Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions
, edited by
F.
Binder
,
L. A.
Correa
,
C.
Gogolin
,
J.
Anders
, and
G.
Adesso
(
Springer
,
Cham, Switzerland
,
2019
), pp.
551
577
.
11.
A.
Garg
,
J. N.
Onuchic
, and
V.
Ambegaokar
, “
Effect of friction on electron transfer in biomolecules
,”
J. Chem. Phys.
83
,
4491
(
1985
).
12.
J.
Ankerhold
and
H.
Lehle
, “
Low temperature electron transfer in strongly condensed phase
,”
J. Chem. Phys.
120
,
1436
(
2004
).
13.
K. H.
Hughes
,
C. D.
Christ
, and
I.
Burghardt
, “
Effective-mode representation of non-Markovian dynamics: A hierarchical approximation of the spectral density. I. Application to single surface dynamics
,”
J. Chem. Phys.
131
,
024109
(
2009
).
14.
K. H.
Hughes
,
C. D.
Christ
, and
I.
Burghardt
, “
Effective-mode representation of non-Markovian dynamics: A hierarchical approximation of the spectral density. II. Application to environment-induced nonadiabatic dynamics
,”
J. Chem. Phys.
131
,
124108
(
2009
).
15.
H.
Wang
and
M.
Thoss
, “
A multilayer multiconfiguration time-dependent Hartree simulation of the reaction-coordinate spin-boson model employing an interaction picture
,”
J. Chem. Phys.
146
,
124112
(
2017
).
16.
J.
Iles-Smith
,
N.
Lambert
, and
A.
Nazir
, “
Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems
,”
Phys. Rev. A
90
,
032114
(
2014
).
17.
J.
Iles-Smith
,
A. G.
Dijkstra
,
N.
Lambert
, and
A.
Nazir
, “
Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations
,”
J. Chem. Phys.
144
,
044110
(
2016
).
18.
C. L.
Latune
, “
Steady state in strong system-bath coupling regime: Reaction coordinate versus perturbative expansion
,”
Phys. Rev. E
105
,
024126
(
2022
).
19.
L. A.
Correa
,
B.
Xu
,
B.
Morris
, and
G.
Adesso
, “
Pushing the limits of the reaction-coordinate mapping
,”
J. Chem. Phys.
151
,
094107
(
2019
).
20.
N.
Anto-Sztrikacs
and
D.
Segal
, “
Strong coupling effects in quantum thermal transport with the reaction coordinate method
,”
New J. Phys.
23
,
063036
(
2021
).
21.
F.
Ivander
,
N.
Anto-Sztrikacs
, and
D.
Segal
, “
Strong system-bath coupling reshapes characteristics of quantum thermal machines
,”
Phys. Rev. E
105
,
034112
(
2022
).
22.
P.
Strasberg
,
G.
Schaller
,
N.
Lambert
, and
T.
Brandes
, “
Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping
,”
New J. Phys.
18
,
073007
(
2016
).
23.
D.
Newman
,
F.
Mintert
, and
A.
Nazir
, “
Performance of a quantum heat engine at strong reservoir coupling
,”
Phys. Rev. E
95
,
032139
(
2017
).
24.
D.
Newman
,
F.
Mintert
, and
A.
Nazir
, “
Quantum limit to nonequilibrium heat-engine performance imposed by strong system-reservoir coupling
,”
Phys. Rev. E
101
,
052129
(
2020
).
25.
C.
McConnell
and
A.
Nazir
, “
Strong coupling in thermoelectric nanojunctions: A reaction coordinate framework
,”
New J. Phys.
24
,
025002
(
2022
).
26.
P.
Strasberg
,
G.
Schaller
,
T. L.
Schmidt
, and
M.
Esposito
, “
Fermionic reaction coordinates and their application to an autonomous Maxwell demon in the strong-coupling regime
,”
Phys. Rev. B
97
,
205405
(
2018
).
27.
S.
Restrepo
,
S.
Böhling
,
J.
Cerrillo
, and
G.
Schaller
, “
Electron pumping in the strong coupling and non-Markovian regime: A reaction coordinate mapping approach
,”
Phys. Rev. B
100
,
035109
(
2019
).
28.
N.
Anto-Sztrikacs
and
D.
Segal
, “
Capturing non-Markovian dynamics with the reaction coordinate method
,”
Phys. Rev. A
104
,
052617
(
2021
).
29.
J.
Senior
,
A.
Gubaydullin
,
B.
Karimi
,
J. T.
Peltonen
,
J.
Ankerhold
, and
J. P.
Pekola
, “
Heat rectification via a superconducting artificial atom
,”
Commun. Phys.
3
,
40
(
2020
).
30.
D.
Segal
and
A.
Nitzan
, “
Spin-boson thermal rectifier
,”
Phys. Rev. Lett.
94
,
034301
(
2005
).
31.
K. A.
Velizhanin
,
H.
Wang
, and
M.
Thoss
, “
Heat transport through model molecular junctions: A multilayer multiconfiguration time-dependent Hartree approach
,”
Chem. Phys. Lett.
460
,
325
(
2008
).
32.
K. A.
Velizhanin
,
M.
Thoss
, and
H.
Wang
, “
Meir–Wingreen formula for heat transport in a spin-boson nanojunction model
,”
J. Chem. Phys.
133
,
084503
(
2010
).
33.
L.
Nicolin
and
D.
Segal
, “
Non-equilibrium spin-boson model: Counting statistics and the heat exchange fluctuation theorem
,”
J. Chem. Phys.
135
,
164106
(
2011
).
34.
K.
Saito
and
T.
Kato
, “
Kondo signature in heat transfer via a local two-state system
,”
Phys. Rev. Lett.
111
,
214301
(
2013
).
35.
N.
Boudjada
and
D.
Segal
, “
From dissipative dynamics to studies of heat transfer at the nanoscale: Analysis of the spin-boson Model
,”
J. Phys. Chem. A
118
,
11323
(
2014
).
36.
D.
Segal
, “
Heat transfer in the spin-boson model: A comparative study in the incoherent tunneling regime
,”
Phys. Rev. E
90
,
012148
(
2014
).
37.
C.
Wang
,
J.
Ren
, and
J.
Cao
, “
Nonequilibrium energy transfer at nanoscale: A unified theory from weak to strong coupling
,”
Sci. Rep.
5
,
11787
(
2015
).
38.
C.
Hsieh
,
J.
Liu
,
C.
Duan
, and
J.
Cao
, “
A nonequilibrium variational polaron theory to study quantum heat transport
,”
J. Phys. Chem. C
123
,
17196
(
2019
).
39.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines
,”
J. Chem. Phys.
145
,
224105
(
2016
).
40.
L.
Song
and
Q.
Shi
, “
Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator
,”
Phys. Rev. B
95
,
064308
(
2017
).
41.
B. K.
Agarwalla
and
D.
Segal
, “
Energy current and its statistics in the nonequilibrium spin-boson model: Majorana fermion representation
,”
New J. Phys.
19
,
043030
(
2017
).
42.
J.
Liu
,
H.
Xu
,
B.
Li
, and
C.
Wu
, “
Energy transfer in the nonequilibrium spin-boson model: From weak to strong coupling
,”
Phys. Rev. E
96
,
012135
(
2017
).
43.
M.
Kilgour
,
B. K.
Agarwalla
, and
D.
Segal
, “
Path-integral methodology and simulations of quantum thermal transport: Full counting statistics approach
,”
J. Chem. Phys.
150
,
084111
(
2019
).
44.
J.
Liu
,
C.-Y.
Hsieh
,
D.
Segal
, and
G.
Hanna
, “
Heat transfer statistics in mixed quantum-classical systems
,”
J. Chem. Phys.
149
,
224104
(
2018
).
45.
P.
Carpio-Martínez
and
G.
Hanna
, “
Nonequilibrium heat transport in a molecular junction: A mixed quantum-classical approach
,”
J. Chem. Phys.
151
,
074112
(
2019
).
46.
P.
Carpio-Martínez
and
G.
Hanna
, “
Quantum bath effects on nonequilibrium heat transport in model molecular junctions
,”
J. Chem. Phys.
154
,
094108
(
2021
).
47.
A.
Kelly
, “
Mean field theory of thermal energy transport in molecular junctions
,”
J. Chem. Phys.
150
,
204107
(
2019
).
48.
W.
Wu
and
W.-L.
Zhu
, “
Heat transfer in a nonequilibrium spin-boson model: A perturbative approach
,”
Ann. Phys.
418
,
168203
(
2020
).
49.
E.
Aurell
,
B.
Donvil
, and
K.
Mallick
, “
Large deviations and fluctuation theorem for the quantum heat current in the spin-boson model
,”
Phys. Rev. E
101
,
052116
(
2020
).
50.
G.
Schaller
,
G. G.
Giusteri
, and
G. L.
Celardo
, “
Collective couplings: Rectification and supertransmittance
,”
Phys. Rev. E
94
,
032135
(
2016
).
51.
G. G.
Giusteri
,
F.
Recrosi
,
G.
Schaller
, and
G. L.
Celardo
, “
Interplay of different environments in open quantum systems: Breakdown of the additive approximation
,”
Phys. Rev. E
96
,
012113
(
2017
).
52.
K.-W.
Sun
,
Y.
Fujihashi
,
A.
Ishizaki
, and
Y.
Zhao
, “
A variational master equation approach to quantum dynamics with off-diagonal coupling in a sub-Ohmic environment
,”
J. Chem. Phys.
144
,
204106
(
2016
).
53.
T.
Palm
and
P.
Nalbach
, “
Quasi-adiabatic path integral approach for quantum systems under the influence of multiple non-commuting fluctuations
,”
J. Chem. Phys.
149
,
214103
(
2018
).
54.
T.
Palm
and
P.
Nalbach
, “
Dephasing and relaxational polarized sub-Ohmic baths acting on a two-level system
,”
J. Chem. Phys.
150
,
234108
(
2019
).
55.
N.
Acharyya
,
R.
Ovcharenko
, and
B. P.
Fingerhut
, “
On the role of non-diagonal system–environment interactions in bridge-mediated electron transfer
,”
J. Chem. Phys.
153
,
185101
(
2020
).
56.
A.
Purkayastha
,
G.
Guarnieri
,
M. T.
Mitchison
,
R.
Filip
, and
J.
Goold
, “
Tunable phonon-induced steady state coherence in a double-quantum-dot charge qubit
,”
npj Quantum Inf.
6
,
27
(
2020
).
57.
C.
Duan
,
C.-Y.
Hsieh
,
J.
Liu
,
J.
Wu
, and
J.
Cao
, “
Unusual transport properties with noncommutative system–bath coupling operators
,”
J. Phys. Chem. Lett.
11
,
4080
(
2020
).
58.
R.
Belyansky
,
S.
Whitsitt
,
R.
Lundgren
,
Y.
Wang
,
A.
Vrajitoarea
,
A. A.
Houck
, and
A. V.
Gorshkov
, “
Frustration-induced anomalous transport and strong photon decay in waveguide QED
,”
Phys. Rev. Res.
3
,
L032058
(
2021
).
59.
Z.-Z.
Zhang
and
W.
Wu
, “
Non-Markovian temperature sensing
,”
Phys. Rev. Res.
3
,
043039
(
2021
).
60.
Z.-H.
Chen
,
H.-X.
Che
,
Z.-K.
Chen
,
C.
Wang
, and
J.
Ren
, “
Tuning nonequilibrium heat current and two-photon statistics via composite qubit-resonator interaction
,”
Phys. Rev. Res.
4
,
013152
(
2022
).
61.
G. D.
Scholes
, “
Long-range resonance energy transfer in molecular systems
,”
Annu. Rev. Phys. Chem.
54
,
57
(
2003
).
62.
C. X.
Yu
,
L.-A.
Wu
, and
D.
Segal
, “
Theory of quantum energy transfer in spin chains: Superexchange and ballistic motion
,”
J. Chem. Phys.
135
,
234508
(
2011
).
63.
A.
Kato
and
Y.
Tanimura
, “
Hierarchical equations of motion approach to quantum thermodynamics
,” in
Thermodynamics in the Quantum Regime: Recent Progress and Outlook
, edited by
F.
Binder
,
L. A.
Correa
,
C.
Gogolin
,
J.
Anders
, and
G.
Adesso
(
Springer
,
Cham, Switzerland
,
2018
), pp.
579
595
.
64.
D.
Segal
and
A.
Nitzan
, “
Spin-boson thermal rectifier
,”
Phys. Rev. Lett.
94
,
034301
(
2005
).
65.
L. A.
Wu
,
C. X.
Yu
, and
D.
Segal
, “
Nonlinear quantum heat transfer in hybrid structures: Sufficient conditions for thermal rectification
,”
Phys. Rev. E
80
,
041103
(
2009
).
66.
H.
Maguire
,
J.
Iles-Smith
, and
A.
Nazir
, “
Environmental nonadditivity and Franck-Condon physics in nonequilibrium quantum systems
,”
Phys. Rev. Lett.
123
,
093601
(
2019
).
67.
D.
Gribben
,
D. M.
Rouse
,
J.
Iles-Smith
,
A.
Strathearn
,
H.
Maguire
,
P.
Kirton
,
A.
Nazir
,
E. M.
Gauger
, and
B. W.
Lovett
, “
Exact dynamics of nonadditive environments in non-Markovian open quantum systems
,”
PRX Quantum
3
,
010321
(
2022
).
68.
G. D.
Mahan
,
Many-Particle Physics
, 3rd ed. (
Kluwer Academic
,
New York
,
2000
).
69.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
70.

A measure for departing from second order perturbation method, which was based on the reorganization energy was suggested in Ref. 18, λ2/Ω > T/10. In our parameters, this translates here to λ > 1. However, since a second order perturbative expansion totally fails for the ladder model, it is not obvious that the reorganization criteria is the most relevant here.

71.
L. A.
Correa
,
J. P.
Palao
,
D.
Alonso
, and
G.
Adesso
, “
Quantum-enhanced absorption refrigerators
,”
Sci. Rep.
4
,
3949
(
2014
).
You do not currently have access to this content.