The Ni5Ga3 alloy supported on ZrO2 is a promising catalyst for the reduction of CO2 due to its higher selectivity to methanol at ambient pressure, e.g., activity comparable to industrial catalysts. However, our atomistic understanding of the role of the cooperative effects induced by the Ni5Ga3 alloy formation and its Ni5Ga3/ZrO2 interface in the CO2 reduction is still far from satisfactory. In this work, we tackle these questions by employing density functional theory calculations to investigate the adsorption properties of key CO2 reduction intermediates (CO2, H2, cis-COOH, trans-COOH, HCOO, CO, HCO, and COH) on Ni8, Ga8, Ni5Ga3, (ZrO2)16, and Ni5Ga3/(ZrO2)16. We found that Ni containing clusters tended to assume wetting configurations on the (ZrO2)16 cluster, while the presence of Ga atoms weakens the adsorption energies on the oxide surface. We also observed that CO2 was better activated on the metal–oxide interfaces and on the oxide surface, where it was able to form CO3-like structures. Meanwhile, H2 activation was only observed on Ni sites, which indicates the importance of distinct adsorption sites that can favor different CO2 reduction steps. Moreover, the formation of the metal–oxide interface showed to be beneficial for the adsorption of COOH isomers and unfavorable for the adsorption of HCOO.

1.
Q.
Tang
,
W.
Ji
,
C. K.
Russell
,
Z.
Cheng
,
Y.
Zhang
,
M.
Fan
, and
Z.
Shen
, “
Understanding the catalytic mechanisms of CO2 hydrogenation to methanol on unsupported and supported Ga-Ni clusters
,”
Appl. Energy
253
,
113623
(
2019
).
2.
S.
Solomon
,
G.-K.
Plattner
,
R.
Knutti
, and
P.
Friedlingstein
, “
Irreversible climate change due to carbon dioxide emissions
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
1704
1709
(
2009
).
3.
United in Science 2021,
World Meteorological Organization
,
Genebra, Switzerland
,
2021
.
4.
A.
Álvarez
,
A.
Bansode
,
A.
Urakawa
,
A. V.
Bavykina
,
T. A.
Wezendonk
,
M.
Makkee
,
J.
Gascon
, and
F.
Kapteijn
, “
Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes
,”
Chem. Rev.
117
,
9804
9838
(
2017
).
5.
H.
Yang
,
C.
Zhang
,
P.
Gao
,
H.
Wang
,
X.
Li
,
L.
Zhong
,
W.
Wei
, and
Y.
Sun
, “
A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons
,”
Catal. Sci. Technol.
7
,
4580
4598
(
2017
).
6.
W.-C.
Liu
,
J.
Baek
, and
G. A.
Somorjai
, “
The methanol economy: Methane and carbon dioxide conversion
,”
Top. Catal.
61
,
530
541
(
2018
).
7.
X.
Jiang
,
X.
Nie
,
X.
Guo
,
C.
Song
, and
J. G.
Chen
, “
Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis
,”
Chem. Rev.
120
,
7984
8034
(
2020
).
8.
Y.
Li
,
S. H.
Chan
, and
Q.
Sun
, “
Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review
,”
Nanoscale
7
,
8663
8683
(
2015
).
9.
J.
Zhong
,
X.
Yang
,
Z.
Wu
,
B.
Liang
,
Y.
Huang
, and
T.
Zhang
, “
State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol
,”
Chem. Soc. Rev.
49
,
1385
(
2020
).
10.
W.
Wang
,
S.
Wang
,
X.
Ma
, and
J.
Gong
, “
Recent advances in catalytic hydrogenation of carbon dioxide
,”
Chem. Soc. Rev.
40
,
3703
3727
(
2011
).
11.
F.
Studt
,
I.
Sharafutdinov
,
F.
Abild-Pedersen
,
C. F.
Elkjær
,
J. S.
Hummelshøj
,
S.
Dahl
,
I.
Chorkendorff
, and
J. K.
Nørskov
, “
Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol
,”
Nat. Chem.
6
,
320
324
(
2014
).
12.
I.
Sharafutdinov
,
C. F.
Elkjær
,
H. W.
Pereira de Carvalho
,
D.
Gardini
,
G. L.
Chiarello
,
C. D.
Damsgaard
,
J. B.
Wagner
,
J.-D.
Grunwaldt
,
S.
Dahl
, and
I.
Chorkendorff
, “
Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol
,”
J. Catal.
320
,
77
88
(
2014
).
13.
Q.
Tang
,
Z.
Shen
,
L.
Huang
,
T.
He
,
H.
Adidharma
,
A. G.
Russell
, and
M.
Fan
, “
Synthesis of methanol from CO2 hydrogenation promoted by dissociative adsorption of hydrogen on a Ga3Ni5(221) surface
,”
ChemPhysChem
19
,
18539
18555
(
2017
).
14.
P.
Chen
,
G.
Zhao
,
Y.
Liu
, and
Y.
Lu
, “
Monolithic Ni5Ga3/SiO2/Al2O3/Al-fiber catalyst for CO2 hydrogenation to methanol at ambient pressure
,”
Appl. Catal., A
562
,
234
240
(
2018
).
15.
C. L.
Chiang
,
K. S.
Lin
, and
Y. G.
Lin
, “
Preparation and characterization of Ni5Ga3 for methanol formation via CO2 hydrogenation
,”
Top. Catal.
60
,
685
696
(
2017
).
16.
K.
Ahmad
and
S.
Upadhyayula
, “
Selective conversion of CO2 to methanol over intermetallic Ga-Ni catalyst: Microkinetic modeling
,”
Fuel
278
,
118296
(
2020
).
17.
A.
Gallo
,
J. L.
Snider
,
D.
Sokaras
,
D.
Nordlund
,
T.
Kroll
,
H.
Ogasawara
,
L.
Kovarik
,
M. S.
Duyar
, and
T. F.
Jaramillo
, “
Ni5Ga3 catalysts for CO2 reduction to methanol: Exploring the role of Ga surface oxidation/reduction on catalytic activity
,”
Appl. Catal., B
267
,
118369
(
2020
).
18.
L. F.
Rasteiro
,
M. A.
Rossi
,
J. M.
Assaf
, and
E. M.
Assaf
, “
Low-pressure hydrogenation of CO2 to methanol over Ni-Ga alloys synthesized by a surfactant-assisted co-precipitation method and a proposed mechanism by DRIFTS analysis
,”
Catal. Today
381
,
261
271
(
2020
).
19.
K.
Ahmad
and
S.
Upadhyayula
, “
Kinetics of CO2 hydrogenation to methanol over silica supported intermetallic Ga3Ni5 catalyst in a continuous differential fixed bed reactor
,”
Int. J. Hydrogen Energy
45
,
1140
1150
(
2020
).
20.
Q.
Tang
,
Z.
Shen
,
C. K.
Russell
, and
M.
Fan
, “
Thermodynamic and kinetic study on carbon dioxide hydrogenation to methanol over a Ga3Ni5(111) surface: The effects of step edge
,”
J. Phys. Chem. C
122
,
315
330
(
2018
).
21.
Y.
Lou
,
M.
Steib
,
Q.
Zhang
,
K.
Tiefenbacher
,
A.
Horváth
,
A.
Jentys
,
Y.
Liu
, and
J. A.
Lercher
, “
Design of stable Ni/ZrO2 catalysts for dry reforming of methane
,”
J. Catal.
356
,
147
156
(
2017
).
22.
K.
Li
and
J. G.
Chen
, “
CO2 hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy
,”
ACS Catal.
9
,
7840
7861
(
2019
).
23.
T.
Witoon
,
J.
Chalorngtham
,
P.
Dumrongbunditkul
,
M.
Chareonpanich
, and
J.
Limtrakul
, “
CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases
,”
Chem. Eng. J.
293
,
327
336
(
2016
).
24.
F.
Arena
,
G.
Italiano
,
K.
Barbera
,
S.
Bordiga
,
G.
Bonura
,
L.
Spadaro
, and
F.
Frusteri
, “
Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH
,”
Appl. Catal., A
350
,
16
23
(
2008
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
26.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
,
073005
(
2009
).
27.
A.
Tkatchenko
,
R. A.
DiStasio
,
R.
Car
, and
M.
Scheffler
, “
Accurate and efficient method for many-body van der Waals interactions
,”
Phys. Rev. Lett.
108
,
236402
(
2012
).
28.
K. F.
Andriani
,
J.
Mucelini
, and
J. L. F.
Da Silva
, “
Methane dehydrogenation on 3d 13-atom transition-metal clusters: A density functional theory investigation combined with Spearman rank correlation analysis
,”
Fuel
275
,
117790
(
2020
).
29.
P.
Felício-Sousa
,
K. F.
Andriani
, and
J. L. F.
Da Silva
, “
Ab initio investigation of the role of the d-states occupation on the adsorption properties of H2, CO, CH4 and CH3OH on the Fe13, Co13, Ni13 and Cu13 clusters
,”
Phys. Chem. Chem. Phys.
23
,
8739
8751
(
2021
).
30.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
, “
The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules
,”
J. Chem. Phys.
105
,
6505
6516
(
1996
).
31.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
32.
V.
Havu
,
V.
Blum
,
P.
Havu
, and
M.
Scheffler
, “
Efficient integration for all-electron electronic structure calculation using numeric basis functions
,”
J. Comput. Phys.
228
,
8367
8379
(
2009
).
33.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
(
Springer
,
New York
,
2006
).
34.
L. F.
Rasteiro
,
R. A.
De Sousa
,
L. H.
Vieira
,
V. K.
Ocampo-Restrepo
,
L. G.
Verga
,
J. M.
Assaf
,
J. L.
Da Silva
, and
E. M.
Assaf
, “
Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide-supported Ni5Ga3 catalysts: An experimental and DFT study
,”
Appl. Catal., B
302
,
120842
(
2021
).
35.
Y.
Yang
,
M. G.
White
, and
P.
Liu
, “
Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces
,”
J. Phys. Chem. C
116
,
248
256
(
2012
).
36.
A. S.
Chaves
,
M. J.
Piotrowski
, and
J. L. F.
Da Silva
, “
Evolution of the structural, energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn systems for n = 2–15): A density functional theory investigation
,”
Phys. Chem. Chem. Phys.
19
,
15484
15502
(
2017
).
37.
F.
Orlando Morais
,
K. F.
Andriani
, and
J. L. F.
Da Silva
, “
Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k-means clustering algorithm
,”
J. Chem. Inf. Model.
61
,
3411
3420
(
2021
).
38.
M.
Rupp
,
A.
Tkatchenko
,
K. R.
Müller
, and
O. A.
Von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
39.
S.
Lloyd
, “
Least squares quantization in PCM
,”
IEEE Trans. Inf. Theory
28
,
129
137
(
1982
).
40.
A. R.
Puigdollers
,
F.
Illas
, and
G.
Pacchioni
, “
Structure and properties of zirconia nanoparticles from density functional theory calculations
,”
J. Phys. Chem. C
120
,
4392
4402
(
2016
).
41.
A.
Ruiz Puigdollers
,
S.
Tosoni
, and
G.
Pacchioni
, “
Turning a nonreducible into a reducible oxide via nanostructuring: Opposite behavior of bulk ZrO2 and ZrO2 nanoparticles toward H2 adsorption
,”
J. Phys. Chem. C
120
,
15329
15337
(
2016
).
42.
E.
Albanese
,
A.
Ruiz Puigdollers
, and
G.
Pacchioni
, “
Theory of ferromagnetism in reduced ZrO2−x nanoparticles
,”
ACS Omega
3
,
5301
5307
(
2018
).
43.
L.
Zibordi-Besse
,
L. G.
Verga
,
V. K.
Ocampo-Restrepo
, and
J. L. F.
Da Silva
, “
Ab initio investigation of the formation mechanism of nano-interfaces between 3d-late transition-metals and ZrO2 nanoclusters
,”
Phys. Chem. Chem. Phys.
22
,
8067
8076
(
2020
).
44.
S.-H.
Cha
, “
Comprehensive survey on distance/similarity measures between probability density functions
,”
Int. J. Math. Models Methods Appl. Sci.
1
,
300
307
(
2007
).
45.
R.
Gehrke
and
K.
Reuter
, “
Assessing the efficiency of first-principles basin-hopping sampling
,”
Phys. Rev. B
79
,
085412
(
2009
).
46.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
, “
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
,”
J. Cheminf.
4
,
17
(
2012
).
47.
G.
Herzberg
,
Molecular Spectra and Molecular Structure. Vol. 3: Electronic Spectra and Electronic Structure of Polyatomic Molecules
(
D. Van Nostrand Company
,
1966
).
48.
S.
Demir
and
M. F.
Fellah
, “
A DFT study on Pt doped (4,0) SWCNT: CO adsorption and sensing
,”
Appl. Surf. Sci.
504
,
144141
(
2020
).
49.
M.
Kamel
,
H.
Raissi
,
A.
Morsali
, and
K.
Mohammadifard
, “
Density functional theory study towards investigating the adsorption properties of the γ-Fe2O3 nanoparticles as a nanocarrier for delivery of Flutamide anticancer drug
,”
Adsorption
26
,
925
939
(
2020
).
50.
J. L. F.
Da Silva
, “
Effective coordination concept applied for phase change (GeTe)m(Sb2Te3)n compounds
,”
J. Appl. Phys.
109
,
023502
(
2011
).
51.
V. K.
Ocampo-Restrepo
,
L.
Zibordi-Besse
, and
J. L. F.
Da Silva
, “
Ab initio investigation of the atomistic descriptors in the activation of small molecules on 3d transition-metal 13-atom clusters: The example of H2, CO, H2O and CO2
,”
J. Chem. Phys.
151
,
214301
(
2019
).

Supplementary Material

You do not currently have access to this content.