The artificial intelligence-based prediction of the mechanical properties derived from the tensile test plays a key role in assessing the application profile of new polymeric materials, especially in the design stage, prior to synthesis. This strategy saves time and resources when creating new polymers with improved properties that are increasingly demanded by the market. A quantitative structure–property relationship (QSPR) model for tensile strength at break is presented in this work. The QSPR methodology applied here is based on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From the whole study, a QSPR model composed of five molecular descriptors that achieved a correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of analysis: a more general one in which models are discarded for redundant information metrics and a deeper one in which a chemistry expert can make decisions on the composition of the model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In this way, with the present work, we close a contribution cycle to polymer informatics, providing QSPR models oriented to the prediction of mechanical properties related to the tensile test.

1.
Adams
,
N.
, “
Polymer informatics
,” in
Polymer Libraries
(
Springer
,
Berlin, Heidelberg
,
2010
), pp.
107
149
.
2.
Bilodeau
,
C.
,
Jin
,
W.
,
Jaakkola
,
T.
,
Barzilay
,
R.
, and
Jensen
,
K. F.
, “
Generative models for molecular discovery: Recent advances and challenges
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2022
,
e1608
.
3.
Cai
,
J.
,
Luo
,
J.
,
Wang
,
S.
, and
Yang
,
S.
, “
Feature selection in machine learning: A new perspective
,”
Neurocomputing
300
,
70
79
(
2018
).
4.
Chen
,
L.
,
Pilania
,
G.
,
Batra
,
R.
,
Huan
,
T. D.
,
Kim
,
C.
,
Kuenneth
,
C.
, and
Ramprasad
,
R.
, “
Polymer informatics: Current status and critical next steps
,”
Mater. Sci. Eng.: R: Rep.
144
,
100595
(
2021
).
5.
Chen
,
M.
,
Jabeen
,
F.
,
Rasulev
,
B.
,
Ossowski
,
M.
, and
Boudjouk
,
P.
, “
A computational structure–property relationship study of glass transition temperatures for a diverse set of polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
56
(
11
),
877
885
(
2018
).
6.
Cravero
,
F.
,
Martínez
,
M. J.
,
Ponzoni
,
I.
, and
Díaz
,
M. F.
, “
Computational modelling of mechanical properties for new polymeric materials with high molecular weight
,”
Chemom. Intell. Lab. Syst.
193
,
103851
(
2019
).
7.
Erickson
,
M. E.
,
Ngongang
,
M.
, and
Rasulev
,
B.
, “
A refractive index study of a diverse set of polymeric materials by QSPR with quantum-chemical and additive descriptors
,”
Molecules
25
(
17
),
3772
(
2020
).
8.
Froimowitz
,
M.
, “
HyperChem: A software package for computational chemistry and molecular modeling
,”
Biotechniques
14
(
6
),
1010
1013
(
1993
), Molecular Modeling System, Release 8.0.7 for Windows Hypercube, Inc., Gainesville, USA, 2009.
9.
Guo
,
K.
,
Yang
,
Z.
,
Yu
,
C.-H.
, and
Buehler
,
M. J.
, “
Artificial intelligence and machine learning in design of mechanical materials
,”
Mater. Horiz.
8
(
4
),
1153
1172
(
2021
).
10.
Hall
,
M.
,
Frank
,
E.
,
Holmes
,
G.
,
Pfahringer
,
B.
,
Reutemann
,
P.
, and
Witten
,
I. H.
, “
The WEKA data mining software: An update
,”
ACM SIGKDD Explor. Newsletter
11
(
1
),
10
18
(
2009
).
11.
Hansch
,
C.
and
Fujita
,
T.
, “
p-σ-π analysis. A method for the correlation of biological activity and chemical structure
,”
J. Am. Chem. Soc.
86
(
8
),
1616
1626
(
1964
).
12.
Hu
,
H.
,
Zhang
,
F.
,
Luo
,
S.
,
Chang
,
W.
,
Yue
,
J.
, and
Wang
,
C.-H.
, “
Recent advances in rational design of polymer nanocomposite dielectrics for energy storage
,”
Nano Energy
74
,
104844
(
2020
).
13.
Karuth
,
A.
,
Alesadi
,
A.
,
Xia
,
W.
, and
Rasulev
,
B.
, “
Predicting glass transition of amorphous polymers by application of cheminformatics and molecular dynamics simulations
,”
Polymer
218
,
123495
(
2021
).
14.
Katritzky
,
A. R.
,
Rachwal
,
P.
,
Law
,
K. W.
,
Karelson
,
M.
, and
Lobanov
,
V. S.
, “
Prediction of polymer glass transition temperatures using a general quantitative structure–property relationship treatment
,”
J. Chem. Inf. Comput. Sci.
36
(
4
),
879
884
(
1996
).
15.
Khan
,
P. M.
and
Roy
,
K.
, “
QSPR modelling for prediction of glass transition temperature of diverse polymers
,”
SAR QSAR Environ. Res.
29
(
12
),
935
956
(
2018
).
16.
Kim
,
C.
,
Batra
,
R.
,
Chen
,
L.
,
Tran
,
H.
, and
Ramprasad
,
R.
, “
Polymer design using genetic algorithm and machine learning
,”
Comput. Mater. Sci.
186
,
110067
(
2021
).
17.
Kim
,
C.
,
Chandrasekaran
,
A.
,
Jha
,
A.
, and
Ramprasad
,
R.
, “
Active-learning and materials design: The example of high glass transition temperature polymers
,”
MRS Commun.
9
(
3
),
860
866
(
2019
).
18.
Kuenneth
,
C.
,
Rajan
,
A. C.
,
Tran
,
H.
,
Chen
,
L.
,
Kim
,
C.
, and
Ramprasad
,
R.
, “
Polymer informatics with multi-task learning
,”
Patterns
2
(
4
),
100238
(
2021
).
19.
Lipiński
,
P. F. J.
and
Szurmak
,
P.
, “
SCRAMBLE’N’GAMBLE: A tool for fast and facile generation of random data for statistical evaluation of QSAR models
,”
Chem. Pap.
71
(
11
),
2217
2232
(
2017
).
20.
Liu
,
Y.
,
Esan
,
O. C.
,
Pan
,
Z.
, and
An
,
L.
, “
Machine learning for advanced energy materials
,”
Energy AI
3
,
100049
(
2021
).
21.
Liu
,
Y.
,
Niu
,
C.
,
Wang
,
Z.
,
Gan
,
Y.
,
Zhu
,
Y.
,
Sun
,
S.
, and
Shen
,
T.
, “
Machine learning in materials genome initiative: A review
,”
J. Mater. Sci. Technol.
57
,
113
122
(
2020
).
22.
Li
,
J.
,
Cheng
,
K.
,
Wang
,
S.
,
Morstatter
,
F.
,
Trevino
,
R. P.
,
Tang
,
J.
, and
Liu
,
H.
, “
Feature selection: A data perspective
,”
ACM Computing Surveys (CSUR)
50
(
6
),
1
45
(
2017
).
23.
Martínez
,
M. J.
,
Ponzoni
,
I.
,
Díaz
,
M. F.
,
Vazquez
,
G. E.
, and
Soto
,
A. J.
, “
Visual analytics in cheminformatics: User-supervised descriptor selection for QSAR methods
,”
J. Cheminf.
7
(
1
),
1
17
(
2015
).
24.
Martínez
,
M. J.
,
Razuc
,
M.
, and
Ponzoni
,
I.
, “
MoDeSuS: A machine learning tool for selection of molecular descriptors in QSAR studies applied to molecular informatics
,”
BioMed Res. Int.
2019
,
2905203
(
2019
).
25.
Mauri
,
A.
,
Consonni
,
V.
,
Pavan
,
M.
, and
Todeschini
,
R.
, “
Dragon software: An easy approach to molecular descriptor calculations
,”
Match
56
(
2
),
237
248
(
2006
), DRAGON for Windows (Software for Molecular Descriptor Calculations), Version 5.5; Talete srl: Milan, Italy, 2007.
26.
Meredig
,
B.
, “
Five high-impact research areas in machine learning for materials science
,”
Chem. Mater.
31
,
9579
(
2019
).
27.
Muller
,
C.
,
Pekthong
,
D.
,
Alexandre
,
E.
,
Marcou
,
G.
,
Horvath
,
D.
,
Richert
,
L.
, and
Varnek
,
A.
, “
Prediction of drug induced liver injury using molecular and biological descriptors
,”
Comb. Chem. High Throughput Screen.
18
(
3
),
315
322
(
2015
).
28.
Otsuka
,
S.
,
Kuwajima
,
I.
,
Hosoya
,
J.
,
Xu
,
Y.
, and
Yamazaki
,
M.
, “
PoLyInfo: Polymer database for polymeric materials design
,” in
2011 International Conference on Emerging Intelligent Data and Web Technologies
(
IEEE
,
2011
), pp.
22
29
.
29.
Pal
,
S.
and
Naskar
,
K.
, “
Machine learning model predict stress-strain plot for Marlow hyperelastic material design
,”
Mater. Today Commun.
27
,
102213
(
2021
).
30.
Palomba
,
D.
,
Vazquez
,
G. E.
, and
Díaz
,
M. F.
, “
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures
,”
J. Mol. Graphics Modell.
38
,
137
147
(
2012
).
31.
Palomba
,
D.
,
Vazquez
,
G. E.
, and
Díaz
,
M. F.
, “
Prediction of elongation at break for linear polymers
,”
Chemom. Intell. Lab. Syst.
139
,
121
131
(
2014
).
32.
Ristoski
,
P.
,
Zubarev
,
D. Y.
,
Gentile
,
A. L.
,
Park
,
N.
,
Sanders
,
D.
,
Gruhl
,
D.
,
Kato
,
L.
, and
Welch
,
S.
, “
Expert-in-the-loop AI for polymer discovery
,” in
Proceedings of the 29th ACM International Conference on Information and Knowledge Management
(
AMC
,
2020
), pp.
2701
2708
.
33.
Roy
,
K.
,
Das
,
R. N.
,
Ambure
,
P.
, and
Aher
,
R. B.
, “
Be aware of error measures. Further studies on validation of predictive QSAR models
,”
Chemom. Intell. Lab. Syst.
152
,
18
33
(
2016
).
34.
Schustik
,
S. A.
,
Cravero
,
F.
,
Ponzoni
,
I.
, and
Díaz
,
M. F.
, “
Polymer informatics: Expert-in-the-loop in QSPR modeling of refractive index
,”
Comput. Mater. Sci.
194
,
110460
(
2021
).
35.
Seymour
,
R. B.
and
Carraher
,
C. E.
,
Introducción a la Química de Los Polímeros
, 3ra ed. (
Editorial Reverté
,
Barcelona, España
,
1998
).
36.
Sha
,
W.
,
Li
,
Y.
,
Tang
,
S.
,
Tian
,
J.
,
Zhao
,
Y.
,
Guo
,
Y.
,
Zhang
,
W.
,
Zhang
,
X.
,
Lu
,
S.
,
Cao
,
Y. C.
, and
Cheng
,
S.
, “
Machine learning in polymer informatics
,”
InfoMat
3
(
4
),
353
361
(
2021
).
37.
Taraji
,
M.
,
Haddad
,
P. R.
,
Amos
,
R. I. J.
,
Talebi
,
M.
,
Szucs
,
R.
,
Dolan
,
J. W.
, and
Pohl
,
C. A.
, “
Error measures in quantitative structure-retention relationships studies
,”
J. Chromatogr. A
1524
,
298
302
(
2017
).
38.
Theodosiou
,
A.
and
Kalli
,
K.
, “
Recent trends and advances of fibre Bragg grating sensors in CYTOP polymer optical fibres
,”
Opt. Fiber Technol.
54
,
102079
(
2020
).
39.
Tuan-Anh
,
T.
and
Zaleśny
,
R.
, “
Predictions of high-order electric properties of molecules: Can we benefit from machine learning?
,”
ACS Omega
5
(
10
),
5318
5325
(
2020
).
40.
Ward
,
I. M.
and
Sweeney
,
J.
,
An Introduction to the Mechanical Properties of Solid Polymers
(
John Wiley & Sons, Ltd.
,
England
,
2004
).
41.
Wu
,
S.
,
Kondo
,
Y.
,
Kakimoto
,
M.-a.
 et al., “
Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
,”
npj Comput. Mater.
5
,
66
(
2019
).

Supplementary Material

You do not currently have access to this content.