Assignment and interpretation of the sum-frequency generation vibrational spectra (SFG-VS) depend on the ability to measure and understand the factors affecting the SFG-VS spectral line shape accurately and reliably. In the past, the formulation of the polarization selection rules for SFG-VS and the development of the sub-wavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS) have provided solutions for many of these needs. However, despite these advantages, HR-BB-SFG-VS have not been widely adopted. The majority of SFG measurements so far still relies on the picosecond (ps) scanning SFG-VS or the conventional broadband SFG-VS (BB-SFG-VS) with the spectral resolution around (mostly above) 10 cm−1, which also results in less ideal spectral line shape in the SFG spectra due to the temporal and chirp effects of the laser pulses used in experiment. In this study, the temporal and the chirp effects of laser pulses with different profiles in the SFG experiment on the measured SFG-VS spectral line shape are examined through spectral simulation. In addition, the experimental data of a classical model system, i.e., octadecyltrichlorosilane monolayer on glass, obtained from the ps scanning SFG-VS, the BB-SFG-VS, and the HR-BB-SFG-VS measurements are directly compared and examined. These results show that temporal and chirp effects are often significant in the conventional BB-SFG-VS, resulting in line shape distortions and peak position shifts besides spectral broadening. Such temporal and chirp effects are less significant in the ps scanning SFG-VS. For the HR-BB-SFG-VS, spectral broadening and temporal and chirp effects are insignificant, making HR-BB-SFG-VS the choice for accurate and reliable measurement and analysis of SFG-VS.

1.
J. H.
Hunt
,
P.
Guyot-Sionnest
, and
Y. R.
Shen
,
Chem. Phys. Lett.
133
,
189
(
1987
).
2.
X. D.
Zhu
,
H.
Suhr
, and
Y. R.
Shen
,
Phys. Rev. B
35
,
3047
(
1987
).
3.
Y. R.
Shen
,
Nature
337
,
519
(
1989
).
4.
K. B.
Eisenthal
,
Annu. Rev. Phys. Chem.
43
,
627
(
1992
).
5.
K. B.
Eisenthal
,
Chem. Rev.
96
,
1343
(
1996
).
6.
S.
Roke
,
A. W.
Kleyn
, and
M.
Bonn
,
Chem. Phys. Lett.
370
,
227
(
2003
).
7.
D. K.
Hore
,
J. L.
King
,
F. G.
Moore
,
D. S.
Alavi
,
M. Y.
Hamamoto
, and
G. L.
Richmond
,
Appl. Spectrosc.
58
,
1377
(
2004
).
8.
A. N.
Bordenyuk
and
A. V.
Benderskii
,
J. Chem. Phys.
122
,
134713
(
2005
).
9.
A.
Morita
and
T.
Ishiyama
,
Phys. Chem. Chem. Phys.
10
,
5801
(
2008
).
10.
D.-S.
Zheng
,
Y.
Wang
,
A.-A.
Liu
, and
H.-F.
Wang
,
Int. Rev. Phys. Chem.
27
,
629
(
2008
).
11.
J. A.
Carter
,
Z.
Wang
, and
D. D.
Dlott
,
Acc. Chem. Res.
42
,
1343
(
2009
).
12.
K. C.
Jena
and
D. K.
Hore
,
J. Phys. Chem. C
113
,
15364
(
2009
).
13.
M.
Sovago
,
E.
Vartiainen
, and
M.
Bonn
,
J. Phys. Chem. C
113
,
6100
(
2009
).
14.
F. M.
Geiger
,
Annu. Rev. Phys. Chem.
60
,
61
(
2009
).
15.
Y. R.
Shen
,
J. Phys. Chem. C
116
,
15505
(
2012
).
16.
C. K.
Lin
,
L.
Yang
,
M.
Hayashi
,
C. Y.
Zhu
,
Y.
Fujimura
,
Y. R.
Shen
, and
S. H.
Lin
,
J. Chin. Chem. Soc.
61
,
77
(
2014
).
17.
L.
Velarde
and
H.-F.
Wang
,
Phys. Chem. Chem. Phys.
15
,
19970
(
2013
).
18.
Y. R.
Shen
,
J. Chem. Phys.
153
,
180901
(
2020
).
19.
H. F.
Wang
,
Prog. Surf. Sci.
91
,
155
(
2016
).
20.
X.-H.
Hu
,
L.
Fu
,
J.
Hou
,
Y.-N.
Zhang
,
Z.
Zhang
, and
H.-F.
Wang
,
J. Phys. Chem. Lett.
11
,
1282
(
2020
).
21.
L. J.
Richter
,
T. P.
Petralli-Mallow
, and
J. C.
Stephenson
,
Opt. Lett.
23
,
1594
(
1998
).
22.
J. P.
Smith
and
V.
Hinson-Smith
,
Anal. Chem.
76
,
287A
(
2004
).
23.
J. A.
McGuire
and
Y. R.
Shen
,
J. Opt. Soc. Am. B
23
,
363
(
2006
).
24.
J. E.
Laaser
,
W.
Xiong
, and
M. T.
Zanni
,
J. Phys. Chem. B
115
,
2536
(
2011
).
25.
D.
Zhang
,
J. H.
Gutow
,
K. B.
Eisenthal
, and
T. F.
Heinz
,
J. Chem. Phys.
98
,
5099
(
1993
).
26.
D.
Zhang
,
J.
Gutow
, and
K. B.
Eisenthal
,
J. Phys. Chem.
98
,
13729
(
1994
).
27.
C. D.
Bain
,
J. Chem. Soc., Faraday Trans.
91
,
1281
(
1995
).
28.
Q.
Du
,
X.-d.
Xiao
,
D.
Charych
,
F.
Wolf
,
P.
Frantz
,
Y. R.
Shen
, and
M.
Salmeron
,
Phys. Rev. B
51
,
7456
(
1995
).
29.
G. R.
Bell
,
C. D.
Bain
, and
R. N.
Ward
,
J. Chem. Soc., Faraday Trans.
92
,
515
(
1996
).
30.
S.
Baldelli
,
C.
Schnitzer
,
M. J.
Shultz
, and
D. J.
Campbell
,
J. Phys. Chem. B
101
,
10435
(
1997
).
31.
S.
Baldelli
,
C.
Schnitzer
,
M.
Jane Shultz
, and
D. J.
Campbell
,
Chem. Phys. Lett.
287
,
143
(
1998
).
32.
S.
Baldelli
,
C.
Schnitzer
, and
M. J.
Shultz
,
J. Chem. Phys.
108
,
9817
(
1998
).
33.
C.
Schnitzer
,
S.
Baldelli
, and
M. J.
Shultz
,
Chem. Phys. Lett.
313
,
416
(
1999
).
34.
K. A.
Becraft
and
G. L.
Richmond
,
Langmuir
17
,
7721
(
2001
).
35.
H.-F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B.-H.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
36.
W.
Gan
,
D.
Wu
,
Z.
Zhang
,
R.-r.
Feng
, and
H.-f.
Wang
,
J. Chem. Phys.
124
,
114705
(
2006
).
37.
W.
Gan
,
Z.
Zhang
,
R.-r.
Feng
, and
H.-f.
Wang
,
J. Phys. Chem. C
111
,
8726
(
2007
).
38.
D.
Wu
,
G.-H.
Deng
,
Y.
Guo
, and
H.-f.
Wang
,
J. Phys. Chem. A
113
,
6058
(
2009
).
39.
Z.
Zhang
,
D.-s.
Zheng
,
Y.
Guo
, and
H.-f.
Wang
,
Phys. Chem. Chem. Phys.
11
,
991
(
2009
).
40.
F.
Wei
,
W.
Xiong
,
W.
Li
,
W.
Lu
,
H. C.
Allen
, and
W.
Zheng
,
Phys. Chem. Chem. Phys.
17
,
25114
(
2015
).
41.
L.
Wang
,
Y.
Shen
,
Y.
Yang
,
W.
Lu
,
W.
Li
,
F.
Wei
,
G.
Zheng
,
Y.
Zhou
,
W.
Zheng
, and
Y.
Cao
,
ACS Omega
2
,
9241
(
2017
).
42.
X.-H.
Hu
,
F.
Wei
,
H.
Wang
, and
H.-F.
Wang
,
J. Phys. Chem. C
123
,
15071
(
2019
).
43.
B. C.
Chow
,
T. T.
Ehler
, and
T. E.
Furtak
,
Appl. Phys. B
74
,
395
(
2002
).
44.
S.
Nihonyanagi
,
S.
Ye
, and
K.
Uosaki
,
Electrochim. Acta
46
,
3057
(
2001
).
45.
P. B.
Miranda
and
Y. R.
Shen
,
J. Phys. Chem. B
103
,
3292
(
1999
).
46.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12632
(
1999
).
47.
X.
Wei
,
S.-C.
Hong
,
X.
Zhuang
,
T.
Goto
, and
Y. R.
Shen
,
Phys. Rev. E
62
,
5160
(
2000
).
48.
A.
Bandara
,
J.
Kubota
,
K.
Onda
,
A.
Wada
,
S. S.
Kano
,
K.
Domen
, and
C.
Hirose
,
Surf. Sci.
427–428
,
331
(
1999
).
49.
A. C. L.
Boscheron
,
C. J.
Sauteret
, and
A.
Migus
,
J. Opt. Soc. Am. B
13
,
818
(
1996
).
50.
C. S.
Tian
and
Y. R.
Shen
,
Surf. Sci. Rep.
69
,
105
(
2014
).
51.
T.-a.
Ishibashi
and
H.
Onishi
,
Chem. Phys. Lett.
346
,
413
(
2001
).
52.
D.
Star
,
T.
Kikteva
, and
G. W.
Leach
,
J. Chem. Phys.
111
,
14
(
1999
).
53.
S.
Roke
,
A. W.
Kleyn
, and
M.
Bonn
,
J. Phys. Chem. A
105
,
1683
(
2001
).
54.
C.
Hess
,
M.
Wolf
,
S.
Roke
, and
M.
Bonn
,
Surf. Sci.
502–503
,
304
(
2002
).
55.
H.
Noguchi
,
T.
Okada
,
K.
Onda
,
S. S.
Kano
,
A.
Wada
, and
K.
Domen
,
Surf. Sci.
528
,
183
(
2003
).
56.
R.
Zhang
,
X.
Peng
,
Z.
Jiao
,
T.
Luo
,
C.
Zhou
,
X.
Yang
, and
Z.
Ren
,
J. Chem. Phys.
150
,
074702
(
2019
).
57.
C.
Weeraman
,
S. A.
Mitchell
,
R.
Lausten
,
L. J.
Johnston
, and
A.
Stolow
,
Opt. Express
18
,
11483
(
2010
).
58.
L.
Velarde
,
X.-y.
Zhang
,
Z.
Lu
,
A. G.
Joly
,
Z.
Wang
, and
H.-f.
Wang
,
J. Chem. Phys.
135
,
241102
(
2011
).
59.
L.
Velarde
and
H.-f.
Wang
,
J. Chem. Phys.
139
,
084204
(
2013
).
60.
A. L.
Mifflin
,
L.
Velarde
,
J.
Ho
,
B. T.
Psciuk
,
C. F. A.
Negre
,
C. J.
Ebben
,
M. A.
Upshur
,
Z.
Lu
,
B. L.
Strick
,
R. J.
Thomson
,
V. S.
Batista
,
H.-F.
Wang
, and
F. M.
Geiger
,
J. Phys. Chem. A
119
,
1292
(
2015
).
61.
L.
Fu
,
S.-L.
Chen
, and
H.-F.
Wang
,
J. Phys. Chem. B
120
,
1579
(
2016
).
62.
R.-j.
Feng
,
L.
Lin
,
Y.-y.
Li
,
M.-h.
Liu
,
Y.
Guo
, and
Z.
Zhang
,
Biophys. J.
112
,
2173
(
2017
).
63.
Y.
Li
,
R.
Feng
,
L.
Lin
,
M.
Liu
,
Y.
Guo
, and
Z.
Zhang
,
Chin. Chem. Lett.
29
,
357
(
2018
).
64.
A. D.
Curtis
,
S. R.
Burt
,
A. R.
Calchera
, and
J. E.
Patterson
,
J. Phys. Chem. C
115
,
11550
(
2011
).
65.
F. Y.
Shalhout
,
S.
Malyk
, and
A. V.
Benderskii
,
J. Phys. Chem. Lett.
3
,
3493
(
2012
).
66.
P.
Koelsch
,
M. I.
Muglali
,
M.
Rohwerder
, and
A.
Erbe
,
J. Opt. Soc. Am. B
30
,
219
(
2013
).
67.
A. D.
Curtis
,
M. C.
Asplund
, and
J. E.
Patterson
,
J. Phys. Chem. C
115
,
19303
(
2011
).
68.
A. D.
Quast
,
A. D.
Curtis
,
B. A.
Horn
,
S. R.
Goates
, and
J. E.
Patterson
,
Anal. Chem.
84
,
1862
(
2012
).
69.
H.-F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
,
Annu. Rev. Phys. Chem.
66
,
189
(
2015
).
70.
J.
Wang
,
H.
Dubost
,
A.
Ghalgaoui
,
W.
Zheng
,
S.
Carrez
,
A.
Ouvrard
, and
B.
Bourguignon
,
Surf. Sci.
626
,
26
(
2014
).
71.
J. F. D.
Liljeblad
and
E.
Tyrode
,
J. Phys. Chem. C
116
,
22893
(
2012
).
72.
A.
Lagutchev
,
S. A.
Hambir
, and
D. D.
Dlott
,
J. Phys. Chem. C
111
,
13645
(
2007
).
73.
A.
Lagutchev
,
A.
Lozano
,
P.
Mukherjee
,
S. A.
Hambir
, and
D. D.
Dlott
,
Spectrochim. Acta, Part A
75
,
1289
(
2010
).
74.
I. G.
Prichett
and
A. M.
Massari
,
Opt. Lett.
43
,
4747
(
2018
).
75.
A. M.
Weiner
,
Rev. Sci. Instrum.
71
,
1929
(
2000
).
76.
D. W.
McCamant
,
P.
Kukura
, and
R. A.
Mathies
,
Appl. Spectrosc.
57
,
1317
(
2003
).
77.
D. W.
McCamant
,
P.
Kukura
,
S.
Yoon
, and
R. A.
Mathies
,
Rev. Sci. Instrum.
75
,
4971
(
2004
).
78.
A.
Natan
,
J. M.
Levitt
,
L.
Graham
,
O.
Katz
, and
Y.
Silberberg
,
Appl. Phys. Lett.
100
,
051111
(
2012
).
79.
J.
Dasgupta
,
R. R.
Frontiera
,
C.
Fang
, and
R. A.
Mathies
, in
Encyclopedia of Biophysics
, edited by
G. C. K.
Roberts
(
Springer
,
Berlin, Heidelberg
,
2013
), p.
745
.
80.
D.
Polli
,
V.
Kumar
,
C. M.
Valensise
,
M.
Marangoni
, and
G.
Cerullo
,
Laser Photonics Rev.
12
,
1800020
(
2018
).
81.
L.
Zhu
,
W.
Liu
,
Y.
Wang
, and
C.
Fang
,
Appl. Sci.
5
,
48
(
2015
).
82.
M.
Nejbauer
,
T. M.
Kardaś
,
Y.
Stepanenko
, and
C.
Radzewicz
,
Opt. Lett.
41
,
2394
(
2016
).
83.
D.
Zheng
,
L.
Lu
,
Y.
Li
,
K. F.
Kelly
, and
S.
Baldelli
,
J. Phys. Chem. Lett.
7
,
1781
(
2016
).
84.
D.
Zheng
,
L.
Lu
,
K. F.
Kelly
, and
S.
Baldelli
,
J. Phys. Chem. B
122
,
464
(
2018
).
85.
Z.
Heiner
,
L.
Wang
,
V.
Petrov
, and
M.
Mero
,
Opt. Express
27
,
15289
(
2019
).
86.
H.
Li
and
S.
Baldelli
,
J. Phys. Chem. C
125
,
13560
(
2021
).
87.
J. D.
Pickering
,
M.
Bregnhøj
,
A. S.
Chatterley
,
M. H.
Rasmussen
,
S. J.
Roeters
,
K.
Strunge
, and
T.
Weidner
,
Biointerphases
17
,
011202
(
2022
).
88.
F.
Yesudas
,
M.
Mero
,
J.
Kneipp
, and
Z.
Heiner
,
J. Chem. Phys.
148
,
104702
(
2018
).
89.
Z.
Li
,
B.
Corbett
,
A.
Gocalinska
,
E.
Pelucchi
,
W.
Chen
,
K. M.
Ryan
,
P.
Khan
,
C.
Silien
,
H.
Xu
, and
N.
Liu
,
Light Sci. Appl.
9
,
180
(
2020
).
90.
I. V.
Stiopkin
,
H. D.
Jayathilake
,
C.
Weeraman
, and
A. V.
Benderskii
,
J. Chem. Phys.
132
,
234503
(
2010
).
91.
B. D.
Prince
,
A.
Chakraborty
,
B. M.
Prince
, and
H. U.
Stauffer
,
J. Chem. Phys.
125
,
044502
(
2006
).
92.
A.
Shutov
,
D.
Pestov
,
N.
Altangerel
,
Z.
Yi
,
X.
Wang
,
A.
Sokolov
, and
M.
Scully
,
Appl. Sci.
7
,
705
(
2017
).
93.
L.
Dalstein
,
E.
Potapova
, and
E.
Tyrode
,
Phys. Chem. Chem. Phys.
19
,
10343
(
2017
).
94.
L.
Velarde
,
Z.
Lu
, and
H.-f.
Wang
,
Chin. J. Chem. Phys.
26
,
710
(
2013
).
95.
A. U.
Chowdhury
,
F.
Liu
,
B. R.
Watson
,
R.
Ashkar
,
J.
Katsaras
,
C.
Patrick Collier
,
D. A.
Lutterman
,
Y.-Z.
Ma
,
T. R.
Calhoun
, and
B.
Doughty
,
Opt. Lett.
43
,
2038
(
2018
).
96.
J.-C.
Diels
and
W.
Rudolph
, “
Femtosecond optics
,” in
Ultrashort Laser Pulse Phenomena
, 2nd ed. (
Academic Press
,
Burlington
,
2006
), Chap. 2, p.
61
.
97.
A. M.
Weiner
, “
Ultrafast-pulse measurement methods
,”
Ultrafast Optics
(
Wiley
,
2009
), p.
85
.
98.
K. P.
Knutsen
,
J. C.
Johnson
,
A. E.
Miller
,
P. B.
Petersen
, and
R. J.
Saykally
,
Chem. Phys. Lett.
387
,
436
(
2004
).
99.
A. F.
Pegoraro
,
A.
Ridsdale
,
D. J.
Moffatt
,
Y.
Jia
,
J. P.
Pezacki
, and
A.
Stolow
,
Opt. Express
17
,
2984
(
2009
).
100.
K. P.
Knutsen
,
B. M.
Messer
,
R. M.
Onorato
, and
R. J.
Saykally
,
J. Phys. Chem. B
110
,
5854
(
2006
).
101.
F.
Wei
,
W.-x.
Xia
,
Z.-j.
Hu
,
W.-h.
Li
,
J.-y.
Zhang
, and
W.-q.
Zheng
,
Chin. J. Chem. Phys.
29
,
171
(
2016
).
102.
N.
Ji
,
V.
Ostroverkhov
,
C.-Y.
Chen
, and
Y.-R.
Shen
,
J. Am. Chem. Soc.
129
,
10056
(
2007
).
103.
A.
Boulesbaa
and
E.
Borguet
,
J. Phys. Chem. Lett.
5
,
528
(
2014
).
104.
G.-H.
Deng
,
Y.
Qian
, and
Y.
Rao
,
J. Chem. Phys.
150
,
024708
(
2019
).
You do not currently have access to this content.