We perform path integral molecular dynamics (PIMD) simulations of a monatomic liquid that exhibits a liquid–liquid phase transition and liquid–liquid critical point. PIMD simulations are performed using different values of Planck’s constant h, allowing us to study the behavior of the liquid as nuclear quantum effects (NQE, i.e., atoms delocalization) are introduced, from the classical liquid (h = 0) to increasingly quantum liquids (h > 0). By combining the PIMD simulations with the ring-polymer molecular dynamics method, we also explore the dynamics of the classical and quantum liquids. We find that (i) the glass transition temperature of the low-density liquid (LDL) is anomalous, i.e., TgLDL(P) decreases upon compression. Instead, (ii) the glass transition temperature of the high-density liquid (HDL) is normal, i.e., TgHDL(P) increases upon compression. (iii) NQE shift both TgLDL(P) and TgHDL(P) toward lower temperatures, but NQE are more pronounced on HDL. We also study the glass behavior of the ring-polymer systems associated with the quantum liquids studied (via the path-integral formulation of statistical mechanics). There are two glass states in all the systems studied, low-density amorphous ice (LDA) and high-density amorphous ice (HDA), which are the glass counterparts of LDL and HDL. In all cases, the pressure-induced LDA–HDA transformation is sharp, reminiscent of a first-order phase transition. In the low-quantum regime, the LDA–HDA transformation is reversible, with identical LDA forms before compression and after decompression. However, in the high-quantum regime, the atoms become more delocalized in the final LDA than in the initial LDA, raising questions on the reversibility of the LDA–HDA transformation.

2.
A.
Hedler
,
S. L.
Klaumünzer
, and
W.
Wesch
,
Nat. Mater.
3
,
804
(
2004
).
3.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
,
Chem. Rev.
116
,
7529
(
2016
).
4.
T. E.
Markland
,
J. A.
Morrone
,
B. J.
Berne
,
K.
Miyazaki
,
E.
Rabani
, and
D. R.
Reichman
,
Nat. Phys.
7
,
134
(
2011
).
5.
T. E.
Markland
,
J. A.
Morrone
,
K.
Miyazaki
,
B. J.
Berne
,
D. R.
Reichman
, and
E.
Rabani
,
J. Chem. Phys.
136
,
074511
(
2012
).
6.
K.
Kinugawa
and
A.
Takemoto
,
J. Chem. Phys.
154
,
224503
(
2021
).
7.
V. V.
Brazhkin
and
A. G.
Lyapin
,
J. Phys.: Condens. Matter
15
,
6059
(
2003
).
8.
C. A.
Angell
,
R. D.
Bressel
,
M.
Hemmati
,
E. J.
Sare
, and
J. C.
Tucker
,
Phys. Chem. Chem. Phys.
2
,
1559
(
2000
).
9.
P. H.
Poole
,
T.
Grande
,
C. A.
Angell
, and
P. F.
McMillan
,
Science
275
(
5298
),
322
(
1997
).
10.
M. A.
Morales
,
C.
Pierleoni
,
E.
Schwegler
, and
D. M.
Ceperley
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
12799
(
2010
).
11.
B.
Cheng
,
G.
Mazzola
,
C. J.
Pickard
, and
M.
Ceriotti
,
Nature
585
,
217
(
2020
).
12.
S.
Scandolo
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
3051
(
2003
).
13.
I.
Tamblyn
and
S. A.
Bonev
,
Phys. Rev. Lett.
104
,
065702
(
2010
).
14.
R.
Li
,
J.
Chen
,
X.
Li
,
E.
Wang
, and
L.
Xu
,
New J. Phys.
17
,
063023
(
2015
).
15.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
16.
T.
Loerting
and
N.
Giovambattista
,
J. Phys.: Condens. Matter
18
,
R919
(
2006
).
17.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
310
,
393
(
1984
).
18.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
314
,
76
(
1985
).
20.
K.
Amann-Winkel
,
R.
Bohmer
,
F.
Fujara
,
C.
Gainaru
,
B.
Geil
, and
T.
Loerting
,
Rev. Mod. Phys.
88
,
011002
(
2016
).
21.
K. H.
Kim
,
K.
Amann-Winkel
,
N.
Giovambattista
,
A.
Späh
,
F.
Perakis
,
H.
Pathak
,
M. L.
Parada
,
C.
Yang
,
D.
Mariedahl
,
T.
Eklund
 et al.,
Science
370
,
978
(
2020
).
22.
J.
Wong
,
D. A.
Jahn
, and
N.
Giovambattista
,
J. Chem. Phys.
143
,
074501
(
2015
).
23.
A.
Eltareb
,
G. E.
Lopez
, and
N.
Giovambattista
,
Phys. Chem. Chem. Phys.
23
,
6914
(
2021
).
24.
A.
Eltareb
,
G. E.
Lopez
, and
N.
Giovambattista
,
Sci. Rep.
12
,
6004
(
2022
).
25.
F.
Caupin
,
P.
Ragueneau
, and
B.
Issenmann
, arXiv:2112.09010 (
2021
).
26.
C.
Gainaru
,
A. L.
Agapov
,
V.
Fuentes-Landete
,
K.
Amann-Winkel
,
H.
Nelson
,
K. W.
Köster
,
A. I.
Kolesnikov
,
V. N.
Novikov
,
R.
Richert
,
R.
Bohmer
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
111
,
17402
(
2014
).
27.
28.
Y.
Liu
,
G.
Sun
,
A.
Eltareb
,
G. E.
Lopez
, and
N.
Giovambattista
,
Phys. Rev. Res.
2
,
013153
(
2020
).
29.
B.
Nguyen
,
G. E.
Lopez
, and
N.
Giovambattista
,
Phys. Chem. Chem. Phys.
20
,
8210
(
2018
).
30.
K. H.
Kim
,
A.
Späh
,
H.
Pathak
,
F.
Perakis
,
D.
Mariedahl
,
K.
Amann-Winkel
,
J. A.
Sellberg
,
J. H.
Lee
,
S.
Kim
,
J.
Park
 et al.,
Science
358
,
1589
(
2017
).
31.
S.
Reisman
and
N.
Giovambattista
,
J. Chem. Phys.
138
,
064509
(
2013
).
32.
J. Y.
Abraham
,
S. V.
Buldyrev
, and
N.
Giovambattista
,
J. Phys. Chem. B
115
,
14229
(
2011
).
33.
N.
Giovambattista
,
T.
Loerting
,
B. R.
Lukanov
, and
F. W.
Starr
,
Sci. Rep.
2
,
390
(
2012
).
34.
A.
Gordon
and
N.
Giovambattista
,
Phys. Rev. Lett.
112
,
145701
(
2014
).
35.
M.
Tuckerman
,
Statistical Mechanics and Molecular Simulations
(
Oxford University Press
,
Oxford, UK
,
2008
).
36.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
37.
M.
Boninsegni
,
N.
Prokof’ev
, and
B.
Svistunov
,
Phys. Rev. Lett.
96
,
105301
(
2006
).
38.
P. G.
Debenedetti
,
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
39.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature
360
,
324
(
1992
).
40.
Y.
Liu
,
J. C.
Palmer
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
J. Chem. Phys.
137
,
214505
(
2012
).
41.
P. H.
Poole
,
R. K.
Bowles
,
I.
Saika-Voivod
, and
F.
Sciortino
,
J. Chem. Phys.
138
,
034505
(
2013
).
42.
R. S.
Singh
,
J. W.
Biddle
,
P. G.
Debenedetti
, and
M. A.
Anisimov
,
J. Chem. Phys.
144
,
144504
(
2016
).
43.
J. W.
Biddle
,
R. S.
Singh
,
E. M.
Sparano
,
F.
Ricci
,
M. A.
González
,
C.
Valeriani
,
J. L. F.
Abascal
,
P. G.
Debenedetti
,
M. A.
Anisimov
, and
F.
Caupin
,
J. Chem. Phys.
146
,
034502
(
2017
).
44.
T. E.
Gartner
,
L.
Zhang
,
P. M.
Piaggi
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
26040
(
2020
).
45.
R.
Li
,
G.
Sun
, and
L.
Xu
,
J. Chem. Phys.
145
,
054506
(
2016
).
46.
N. A.
Shumovskyi
,
T. J.
Longo
,
S. V.
Buldyrev
, and
M. A.
Anisimov
, arXiv:2111.08109 (
2021
).
47.
L.
Henry
,
M.
Mezouar
,
G.
Garbarino
,
D.
Sifré
,
G.
Weck
, and
F.
Datchi
,
Nature
584
,
382
(
2020
).
48.
Y.
Katayama
,
T.
Mizutani
,
W.
Utsumi
,
O.
Shimomura
,
M.
Yamakata
, and
K.-i.
Funakoshi
,
Nature
403
,
170
(
2000
).
49.
M.
Beye
,
F.
Sorgenfrei
,
W. F.
Schlotter
,
W.
Wurth
, and
A.
Föhlisch
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
16772
(
2010
).
50.
T.
Morishita
,
Phys. Rev. Lett.
87
,
105701
(
2001
).
51.
S.
Sastry
and
C. A.
Angell
,
Nat. Mater.
2
,
739
(
2003
).
52.
V. V.
Vasisht
,
S.
Saw
, and
S.
Sastry
,
Nat. Phys.
7
,
549
(
2011
).
53.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
54.
M.
Rossi
,
M.
Ceriotti
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
140
,
234116
(
2014
).
55.
T. F.
Miller
 III
,
J. Chem. Phys.
129
,
194502
(
2008
).
56.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
133
,
124104
(
2010
).
57.
J.
Åqvist
,
P.
Wennerström
,
M.
Nervall
,
S.
Bjelic
, and
B. O.
Brandsdal
,
Chem. Phys. Lett.
384
,
288
(
2004
).
58.
K.-H.
Chow
and
D. M.
Ferguson
,
Comput. Phys. Commun.
91
,
283
(
1995
).
59.
P.
Eastman
,
M. S.
Friedrichs
,
J. D.
Chodera
,
R. J.
Radmer
,
C. M.
Bruns
,
J. P.
Ku
,
K. A.
Beauchamp
,
T. J.
Lane
,
L.-P.
Wang
,
D.
Shukla
 et al.,
J. Chem. Theory Comput.
9
,
461
(
2013
).
60.
S. V.
Buldyrev
,
G.
Malescio
,
C. A.
Angell
,
N.
Giovambattista
,
S.
Prestipino
,
F.
Saija
,
H. E.
Stanley
, and
L.
Xu
,
J. Phys.: Condens. Matter
21
,
504106
(
2009
).
61.
N.
Giovambattista
, “
The liquid–liquid phase transition, anomalous properties, and glass behavior of polymorphic liquids
,” in
Liquid Polymorphism
(
John Wiley & Sons
,
2013
), pp.
113
138
.
62.
D.
Khomenko
,
C.
Scalliet
,
L.
Berthier
,
D. R.
Reichman
, and
F.
Zamponi
,
Phys. Rev. Lett.
124
,
225901
(
2020
).
63.
W.
Shinoda
and
M.
Shiga
,
Phys. Rev. E
71
,
041204
(
2005
).
64.
M.
Shiga
and
W.
Shinoda
,
J. Chem. Phys.
123
,
134502
(
2005
).
65.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
66.
We note that the “LDA” and “HDA” forms identified in Ref. 6 are different in nature to the LDA and HDA forms reported here since, as far as we know, the “classical” version of the pair potential of 4He used in Ref. 6 does not exhibit a LLPT or LDA–HDA transformation.
67.
The experimental RDF is given by the replicas RDF (averaged over the replicas) so the centroids RDF is not practically accessible.
68.
N.
Giovambattista
,
F. W.
Starr
, and
P. H.
Poole
,
J. Chem. Phys.
147
,
044501
(
2017
).
69.
P. H.
Handle
,
F.
Sciortino
, and
N.
Giovambattista
,
J. Chem. Phys.
150
,
244506
(
2019
).

Supplementary Material

You do not currently have access to this content.