Due to the lack of specific collisional data, the abundance of NS+ in cold dense interstellar clouds was determined using collisional rate coefficients of CS as a substitute. To better understand the chemistry of sulfur in the interstellar medium, further abundance modeling using the actual NS+ collisional rate coefficients is needed. For this purpose, we have computed the first full 4D potential energy surface of the NS+–H2 van der Waals complex using the explicitly correlated coupled cluster approach with single, double, and non-iterative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta basis set. The potential energy surface exhibits a global minimum of 848.24 cm−1 for a planar configuration of the complex. The long-range interaction energy, described using multipolar moments, is sensitive to the orientation of H2 up to radial distances of ∼50 a0. From this new interaction potential, we derived excitation cross sections, induced by collision with ortho- and para-H2, for the 15 low-lying rotational levels of NS+ using the quantum mechanical close-coupling approach. By thermally averaging these data, we determined downward rate coefficients for temperatures up to 50 K. By comparing them with the previous NS+–H2 data, we demonstrated that reduced dimensional approaches are not suited for this system. In addition, we found that the CS collisional data underestimate our results by up to an order of magnitude. The differences clearly indicate that the abundance of NS+, in cold dense clouds retrieved from observational spectra, must be reassessed using these new collisional rate coefficients.

1.
P.
Rivière-Marichalar
,
A.
Fuente
,
J. R.
Goicoechea
,
J.
Pety
,
R.
Le Gal
,
P.
Gratier
,
V.
Guzmán
,
E.
Roueff
,
J. C.
Loison
,
V.
Wakelam
 et al.,
Astron. Astrophys.
628
,
A16
(
2019
).
2.
J.
Cernicharo
,
B.
Lefloch
,
M.
Agúndez
,
S.
Bailleux
,
L.
Margulès
,
E.
Roueff
,
R.
Bachiller
,
N.
Marcelino
,
B.
Tercero
,
C.
Vastel
 et al.,
Astrophys. J., Lett.
853
,
L22
(
2018
).
3.
F.
Lique
and
A.
Spielfiedel
,
Astron. Astrophys.
462
,
1179
1185
(
2007
).
4.
T.
Trabelsi
,
Y.
Ajili
,
K.
Hammami
,
M.
Mogren Al Mogren
,
J. S.
Francisco
, and
M.
Hochlaf
,
Mon. Not. R. Astron. Soc.
480
,
4259
4264
(
2018
).
5.
L.
Cabrera-González
,
R.
Mera-Adasme
,
D.
Páez-Hernández
, and
O.
Denis-Alpizar
,
Mon. Not. R. Astron. Soc.
480
,
4969
4973
(
2018
).
6.
C. T.
Bop
,
Mon. Not. R. Astron. Soc.
487
,
5685
5691
(
2019
).
7.
C.
Orek
,
M.
Umiński
,
J.
Kłos
,
F.
Lique
,
P. S.
Zuchowski
, and
N.
Bulut
,
Chem. Phys. Lett.
771
,
138511
(
2021
).
8.
K.
Huber
,
Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules
(
Springer US
,
2013
).
9.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
10.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
1023
(
1989
).
11.
H.-J.
Werner
,
P.
Knowles
,
G.
Knizia
,
F.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
 et al., See http://www.molpro.net,
2010
.
12.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
566
(
1970
).
13.
A. D.
Buckingham
,
Intermolecular Interactions: From Diatomics to Biopolymers
(
Wiley
,
New York
,
1978
).
14.
T.
Korona
and
H.-J.
Werner
,
J. Chem. Phys.
118
,
3006
(
2003
).
15.
H. D.
Cohen
and
C. C. J.
Roothaan
,
J. Chem. Phys.
43
,
S34
S39
(
1965
).
16.
D.
Ndaw
,
C. T.
Bop
,
G.
Dieye
,
N. A. B.
Faye
, and
F.
Lique
,
Mon. Not. R. Astron. Soc.
503
,
5976
5983
(
2021
).
17.
M.
Lanza
,
Y.
Kalugina
,
L.
Wiesenfeld
,
A.
Faure
, and
F.
Lique
,
Mon. Not. R. Astron. Soc.
443
,
3351
3358
(
2014
).
18.
S.
Green
,
J. Chem. Phys.
62
,
2271
2277
(
1975
).
19.
J.
Hutson
and
S.
Green
, Collaborative Computational Project,
1994
.
20.
M. H.
Alexander
and
D. E.
Manolopoulos
,
J. Chem. Phys.
86
,
2044
2050
(
1987
).
21.
C. T.
Bop
,
F.
Lique
,
A.
Faure
,
E.
Quintas-Sánchez
, and
R.
Dawes
,
Mon. Not. R. Astron. Soc.
501
,
1911
1919
(
2020
).
22.
B.
Desrousseaux
,
E.
Quintas-Sánchez
,
R.
Dawes
, and
F.
Lique
,
J. Phys. Chem. A
123
,
9637
9643
(
2019
).
23.
O.
Denis-Alpizar
,
E.
Quintas-Sánchez
, and
R.
Dawes
,
Mon. Not. R. Astron. Soc.
512
,
5546
5551
(
2022
).
24.
A.
Spielfiedel
,
M. L.
Senent
,
Y.
Kalugina
,
Y.
Scribano
,
C.
Balança
,
F.
Lique
, and
N.
Feautrier
,
J. Chem. Phys.
143
,
024301
(
2015
).
25.
F.
Lique
,
A.
Spielfiedel
, and
J.
Cernicharo
,
Astron. Astrophys.
451
,
1125
1132
(
2006
).
26.
P.
Hily-Blant
,
G.
Pineau des Forêts
,
A.
Faure
, and
F.
Lique
,
Astron. Astrophys.
658
,
A168
(
2022
).

Supplementary Material

You do not currently have access to this content.