The water molecule occurs in two nuclear-spin isomers that differ by the value of the total nuclear spin of the hydrogen atoms, i.e., I = 0 for para-H2O and I = 1 for ortho-H2O. Spectroscopic transitions between rovibrational states of ortho and para water are extremely weak due to the tiny hyperfine nuclear-spinrotation interaction of only ∼30 kHz and, so far, have not been observed. We report the first comprehensive theoretical investigation of the hyperfine effects and ortho–para transitions in H216O due to nuclear-spinrotation and spin–spin interactions. We also present the details of our newly developed general variational approach to the simulation of hyperfine effects in polyatomic molecules. Our results for water suggest that the strongest ortho–para transitions with room-temperature intensities on the order of 10−31 cm/molecule are about an order of magnitude larger than previously predicted values and should be detectable in the mid-infrared ν2 and near-infrared 2ν1 + ν2 and ν1 + ν2 + ν3 bands by current spectroscopy experiments.

1.
P.
Cacciani
,
J.
Cosléou
, and
M.
Khelkhal
, “
Nuclear spin conversion in H2O
,”
Phys. Rev. A
85
,
012521
(
2012
).
2.
A.
Miani
and
J.
Tennyson
, “
Can ortho–para transitions for water be observed?
,”
J. Chem. Phys.
120
,
2732
2739
(
2004
).
3.
D. A.
Horke
,
Y.-P.
Chang
,
K.
Długołęcki
, and
J.
Küpper
, “
Separating para and ortho water
,”
Angew. Chem., Int. Ed.
53
,
11965
11968
(
2014
); arXiv:1407.2056 [physics].
4.
T.
Kravchuk
,
M.
Reznikov
,
P.
Tichonov
,
N.
Avidor
,
Y.
Meir
,
A.
Bekkerman
, and
G.
Alexandrowicz
, “
A magnetically focused molecular beam of ortho-water
,”
Science
331
,
319
321
(
2011
).
5.
A.
Kilaj
,
H.
Gao
,
D.
Rösch
,
U.
Rivero
,
J.
Küpper
, and
S.
Willitsch
, “
Observation of different reactivities of para- and ortho-water towards trapped diazenylium ions
,”
Nat. Commun.
9
,
2096
(
2018
).
6.
C.
Beduz
,
M.
Carravetta
,
J. Y.-C.
Chen
,
M.
Concistrè
,
M.
Denning
,
M.
Frunzi
,
A. J.
Horsewill
,
O. G.
Johannessen
,
R.
Lawler
,
X.
Lei
,
M. H.
Levitt
,
Y.
Li
,
S.
Mamone
,
Y.
Murata
,
U.
Nagel
,
T.
Nishida
,
J.
Ollivier
,
S.
Rols
,
T.
Rõõm
,
R.
Sarkar
,
N. J.
Turro
, and
Y.
Yang
, “
Quantum rotation of ortho and para-water encapsulated in a fullerene cage
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
12894
12898
(
2012
).
7.
M. J.
Mumma
,
H. A.
Weaver
, and
H. P.
Larson
, “
The ortho-para ratio of water vapor in comet P/Halley
,”
Astron. Astrophys.
187
,
419
424
(
1987
).
8.
E. F.
van Dishoeck
,
E. A.
Bergin
,
D. C.
Lis
, and
J. I.
Lunine
, “
Water: From clouds to planets
,” in
Protostars and Planets VI
, edited by
H.
Beuther
,
R. S.
Klessen
,
C. P.
Dullemond
and
T.
Henning
(
University of Arizona Press
,
Tucson
,
2014
), pp.
835
858
.
9.
K.
Willacy
,
C.
Alexander
,
M.
Ali-Dib
,
C.
Ceccarelli
,
S. B.
Charnley
,
M.
Doronin
,
Y.
Ellinger
,
P.
Gast
,
E.
Gibb
,
S. N.
Milam
,
O.
Mousis
,
F.
Pauzat
,
C.
Tornow
,
E. S.
Wirström
, and
E.
Zicler
, “
The composition of the protosolar disk and the formation conditions for comets
,”
Space Sci. Rev.
197
,
151
190
(
2015
).
10.
H.
Kawakita
,
N.
Dello Russo
,
R.
Furusho
,
T.
Fuse
,
J.-i.
Watanabe
,
D. C.
Boice
,
K.
Sadakane
,
N.
Arimoto
,
M.
Ohkubo
, and
T.
Ohnishi
, “
Ortho-to-para ratios of water and ammonia in comet C/2001 Q4 (NEAT): Comparison of nuclear spin temperatures of water, ammonia, and methane
,”
Astrophys. J.
643
,
1337
1344
(
2006
).
11.
T.
Putaud
,
X.
Michaut
,
F.
Le Petit
,
E.
Roueff
, and
D. C.
Lis
, “
The water line emission and ortho-to-para ratio in the Orion Bar photon-dominated region
,”
Astron. Astrophys.
632
,
A8
(
2019
).
12.
M. R.
Hogerheijde
,
E. A.
Bergin
,
C.
Brinch
,
L. I.
Cleeves
,
J. K. J.
Fogel
,
G. A.
Blake
,
C.
Dominik
,
D. C.
Lis
,
G.
Melnick
,
D.
Neufeld
,
O.
Panić
,
J. C.
Pearson
,
L.
Kristensen
,
U. A.
Yıldız
, and
E. F.
van Dishoeck
, “
Detection of the water reservoir in a forming planetary system
,”
Science
334
,
338
340
(
2011
).
13.
D. C.
Lis
,
E. A.
Bergin
,
P.
Schilke
, and
E. F.
van Dishoeck
, “
Ortho-to-Para ratio in interstellar water on the sightline toward sagittarius B2(N)
,”
J. Phys. Chem. A
117
,
9661
9665
(
2013
).
14.
N.
Flagey
,
P. F.
Goldsmith
,
D. C.
Lis
,
M.
Gerin
,
D.
Neufeld
,
P.
Sonnentrucker
,
M.
De Luca
,
B.
Godard
,
J. R.
Goicoechea
,
R.
Monje
, and
T. G.
Phillips
, “
Water absorption in galactic translucent clouds: Conditions and history of the gas derived from Herschel/HIFI PRISMAS observations
,”
Astrophys. J.
762
,
11
(
2012
).
15.
E. F.
van Dishoeck
,
E.
Herbst
, and
D. A.
Neufeld
, “
Interstellar water chemistry: From laboratory to observations
,”
Chem. Rev.
113
,
9043
9085
(
2013
).
16.
R. F.
Curl
, Jr.
,
J. V. V.
Kasper
, and
K. S.
Pitzer
, “
Nuclear spin state equilibration through nonmagnetic collisions
,”
J. Chem. Phys.
46
,
3220
(
1967
).
17.
P. L.
Chapovsky
and
L. J. F.
Hermans
, “
Nuclear spin conversion in polyatomic molecules
,”
Annu. Rev. Phys. Chem.
50
,
315
345
(
1999
).
18.
Z.-D.
Sun
,
K.
Takagi
, and
F.
Matsushima
, “
Separation and conversion dynamics of four nuclear spin isomers of ethylene
,”
Science
310
,
1938
1941
(
2005
).
19.
E.
Ilisca
, “
Ortho-para conversion of hydrogen molecules physisorbed on surfaces
,”
Prog. Surf. Sci.
41
,
217
335
(
1992
).
20.
P. L.
Chapovsky
, “
Hyperfine spectra of CH3F nuclear spin conversion
,”
J. Phys. B: At., Mol. Opt. Phys.
33
,
1001
1011
(
2000
).
21.
P. L.
Chapovsky
, “
Conversion of nuclear spin isomers of water molecules under ultracold conditions of space
,”
Quantum Electron.
49
,
473
478
(
2019
).
22.
D.
Hollenbach
,
M. J.
Kaufman
,
E. A.
Bergin
, and
G. J.
Melnick
, “
Water, O2, and ice in molecular clouds
,”
Astrophys. J.
690
,
1497
1521
(
2008
).
23.
T.
Hama
,
N.
Watanabe
,
A.
Kouchi
, and
M.
Yokoyama
, “
Spin temperature of water molecules desorbed from the surfaces of amorphous solid water, vapor-deposited and produced from photolysis of a CH4/O2 solid mixture
,”
Astrophys. J.
738
,
L15
(
2011
).
24.
T.
Hama
,
A.
Kouchi
, and
N.
Watanabe
, “
Statistical ortho-to-para ratio of water desorbed from ice at 10 kelvin
,”
Science
351
,
65
67
(
2015
).
25.
T.
Hama
,
A.
Kouchi
, and
N.
Watanabe
, “
The ortho-to-para ratio of water molecules desorbed from ice made from para-water monomers at 11 K
,”
Astrophys. J. Lett.
857
,
L13
(
2018
).
26.
R.
Sliter
,
M.
Gish
, and
A. F.
Vilesov
, “
Fast nuclear spin conversion in water clusters and ices: A matrix isolation study
,”
J. Phys. Chem. A
115
,
9682
9688
(
2011
).
27.
Y.
Liu
and
L.
Luo
, “
Molecular collisions: From near-cold to ultra-cold
,”
Front. Phys.
16
,
42300
(
2021
).
28.
S. N.
Yurchenko
,
W.
Thiel
, and
P.
Jensen
, “
Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules
,”
J. Mol. Spectrosc.
245
,
126
140
(
2007
).
29.
A.
Yachmenev
and
S. N.
Yurchenko
, “
Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame
,”
J. Chem. Phys.
143
,
014105
(
2015
).
30.
S. N.
Yurchenko
,
A.
Yachmenev
, and
R. I.
Ovsyannikov
, “
Symmetry adapted ro-vibrational basis functions for variational nuclear motion calculations: TROVE approach
,”
J. Chem. Theory Comput.
13
,
4368
(
2017
); arXiv:1708.07185 [physics].
31.
K. L.
Chubb
,
A.
Yachmenev
,
J.
Tennyson
, and
S. N.
Yurchenko
, “
Treating linear molecule HCCH in calculations of rotation-vibration spectra
,”
J. Chem. Phys.
149
,
014101
(
2018
).
32.
I. I.
Mizus
,
A. A.
Kyuberis
,
N. F.
Zobov
,
V. Y.
Makhnev
,
O. L.
Polyansky
, and
J.
Tennyson
, “
High-accuracy water potential energy surface for the calculation of infrared spectra
,”
Philos. Trans. R. Soc., A
376
,
20170149
(
2018
).
33.
A.
Yachmenev
and
J.
Küpper
, “
Communication: General variational approach to nuclear-quadrupole coupling in rovibrational spectra of polyatomic molecules
,”
J. Chem. Phys.
147
,
141101
(
2017
); arXiv:1709.08558 [physics].
34.
A.
Yachmenev
,
L. V.
Thesing
, and
J.
Küpper
, “
Laser-induced dynamics of molecules with strong nuclear quadrupole coupling
,”
J. Chem. Phys.
151
,
244118
(
2019
); arXiv:1910.13275 [physics].
35.
W. H.
Flygare
, “
Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters
,”
Chem. Rev.
74
,
653
687
(
1974
).
36.
R. N.
Zare
,
Angular Momentum
(
John Wiley & Sons
,
New York, NY, USA
,
1988
).
37.
A.
Owens
and
A.
Yachmenev
, “
RichMol: A general variational approach for rovibrational molecular dynamics in external electric fields
,”
J. Chem. Phys.
148
,
124102
(
2018
); arXiv:1802.07603 [physics].
38.
C.
Saribal
,
G.
Yang
,
E.
Zak
,
Y.
Saleh
,
J.
Eggers
,
V.
Sanjay
,
A.
Yachmenev
, and
J.
Küpper
, “
Richmol: Python package for variational simulations of molecular nuclear motion dynamics in fields
” (unpublished) (
2021
); the current version of the software is available at https://github.com/CFEL-CMI/richmol.
39.
J. K. G.
Watson
, “
Aspects of quartic and sextic centrifugal effects on rotational energy levels
,” in
Vibrational Spectra and Structure
, edited by
J. R.
Durig
(
Marcel Dekker
,
1977
), Vol. 6, p.
1
.
40.
K. A.
Peterson
and
T. H.
Dunning
, “
Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
,”
J. Chem. Phys.
117
,
10548
10560
(
2002
).
41.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
42.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
43.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
New basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
44.
D.
Feller
, “
The role of databases in support of computational chemistry calculations
,”
J. Comput. Chem.
17
,
1571
1586
(
1996
).
45.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
, “
Basis set exchange: A community database for computational sciences
,”
J. Chem. Inf. Model.
47
,
1045
1052
(
2007
).
46.
G. E.
Scuseria
, “
Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2
,”
J. Chem. Phys.
94
,
442
447
(
1991
).
47.
J.
Gauss
,
K.
Ruud
, and
T.
Helgaker
, “
Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors
,”
J. Chem. Phys.
105
,
2804
2812
(
1996
).
48.
J.
Gauss
and
D.
Sundholm
, “
Coupled-cluster calculations of spin-rotation constants
,”
Mol. Phys.
91
,
449
458
(
1997
).
49.
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, “
CFOUR,coupled-cluster techniques for computational chemistry, a quantum-chemical program package
,” With contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
S.
Blaschke
,
Y. J.
Bomble
,
S.
Burger
,
O.
Christiansen
,
D.
Datta
,
F.
Engel
,
R.
Faber
,
J.
Greiner
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
K.
Klein
,
G. M.
Kopper
,
W. J.
Lauderdale
,
F.
Lipparini
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
T.
Nottoli
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
50.
S. N.
Yurchenko
and
T. M.
Mellor
, “
Treating linear molecules in calculations of rotation-vibration spectra
,”
J. Chem. Phys.
153
,
154106
(
2020
).
51.
A.
Yachmenev
,
S. N.
Yurchenko
,
I.
Paidarová
,
P.
Jensen
,
W.
Thiel
, and
S. P. A.
Sauer
, “
Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: The importance of the large amplitude inversion mode
,”
J. Chem. Phys.
132
,
114305
(
2010
).
52.
G.
Cazzoli
,
C.
Puzzarini
,
M. E.
Harding
, and
J.
Gauss
, “
The hyperfine structure in the rotational spectrum of water: Lamb-dip technique and quantum-chemical calculations
,”
Chem. Phys. Lett.
473
,
21
25
(
2009
).
53.
B. V.
Noumerov
, “
A method of extrapolation of perturbations
,”
Mon. Not. R. Astron. Soc.
84
,
592
602
(
1924
).
54.
J. W.
Cooley
, “
An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields
,”
Math. Comput.
15
,
363
374
(
1961
).
55.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
A. G.
Császár
,
L.
Daumont
,
R. R.
Gamache
,
J. T.
Hodges
,
O. V.
Naumenko
,
O. L.
Polyansky
,
L. S.
Rothman
,
A. C.
Vandaele
,
N. F.
Zobov
,
A. R.
Al Derzi
,
C.
Fábri
,
A. Z.
Fazliev
,
T.
Furtenbacher
,
I. E.
Gordon
,
L.
Lodi
, and
I. I.
Mizus
, “
IUPAC critical evaluation of the rotational–vibrational spectra of water vapor, part III: Energy levels and transition wavenumbers for H216O
,”
J. Quant. Spectrosc. Radiat. Transfer
117
,
29
58
(
2013
).
56.
J.
Tennyson
,
S. N.
Yurchenko
,
A. F.
Al-Refaie
,
V. H. J.
Clark
,
K. L.
Chubb
,
E. K.
Conway
,
A.
Dewan
,
M. N.
Gorman
,
C.
Hill
,
A. E.
Lynas-Gray
,
T.
Mellor
,
L. K.
McKemmish
,
A.
Owens
,
O. L.
Polyansky
,
M.
Semenov
,
W.
Somogyi
,
G.
Tinetti
,
A.
Upadhyay
,
I.
Waldmann
,
Y.
Wang
,
S.
Wright
, and
O. P.
Yurchenko
, “
The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres
,”
J. Quant. Spectrosc. Radiat. Transfer
255
,
107228
(
2020
).
57.
A.
Campargue
,
A. M.
Solodov
,
A. A.
Solodov
,
A.
Yachmenev
, and
S. N.
Yurchenko
, “
Detection of electric-quadrupole transitions in water vapour near 5.4 and 2.5 μm
,”
Phys. Chem. Chem. Phys.
22
,
12476
12481
(
2020
).
58.
A.
Campargue
,
S.
Kassi
,
A.
Yachmenev
,
A. A.
Kyuberis
,
J.
Küpper
, and
S. N.
Yurchenko
, “
Observation of electric-quadrupole infrared transitions in water vapor
,”
Phys. Rev. Res.
2
,
023091
(
2020
); arXiv:2001.02922 [physics].
59.
H.
Fleurbaey
,
R.
Grilli
,
D.
Mondelain
,
S.
Kassi
,
A.
Yachmenev
,
S. N.
Yurchenko
, and
A.
Campargue
, “
Electric-quadrupole and magnetic-dipole contributions to the ν23 band of carbon dioxide near 3.3 μm
,”
J. Quant. Spectrosc. Radiat. Transfer
266
,
107558
(
2021
).
60.
A.
Yachmenev
,
A.
Campargue
,
S. N.
Yurchenko
,
J.
Küpper
, and
J.
Tennyson
, “
Electric quadrupole transitions in carbon dioxide
,”
J. Chem. Phys.
154
,
211104
(
2021
).
61.
O. L.
Polyansky
,
A. A.
Kyuberis
,
N. F.
Zobov
,
J.
Tennyson
,
S. N.
Yurchenko
, and
L.
Lodi
, “
ExoMol molecular line lists XXX: A complete high-accuracy line list for water
,”
Mon. Not. R. Astron. Soc.
480
,
2597
2608
(
2018
).
62.
J.
Tennyson
,
S. N.
Yurchenko
,
A. F.
Al-Refaie
,
E. J.
Barton
,
K. L.
Chubb
,
P. A.
Coles
,
S.
Diamantopoulou
,
M. N.
Gorman
,
C.
Hill
,
A. Z.
Lam
,
L.
Lodi
,
L. K.
McKemmish
,
Y.
Na
,
A.
Owens
,
O. L.
Polyansky
,
T.
Rivlin
,
C.
Sousa-Silva
,
D. S.
Underwood
,
A.
Yachmenev
, and
E.
Zak
, “
The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres
,”
J. Mol. Spectrosc.
327
,
73
94
(
2016
), part of special issue on New Visions of Spectroscopic Databases, Volume II.
63.
H.
Bluyssen
,
A.
Dymanus
, and
J.
Verhoeven
, “
Hyperfine structure of H2O and HDSe by beam-maser spectroscopy
,”
Phys. Lett. A
24
,
482
483
(
1967
).
64.
S.
Kassi
and
A.
Campargue
, “
Cavity ring down spectroscopy with 5 × 10−13 cm−1 sensitivity
,”
J. Chem. Phys.
137
,
234201
(
2012
).
65.
E. V.
Karlovets
,
S.
Kassi
, and
A.
Campargue
, “
High sensitivity CRDS of CO2 in the 1.18 μm transparency window. Validation tests of current spectroscopic databases
,”
J. Quant. Spectrosc. Radiat. Transfer
247
,
106942
(
2020
).
66.
R.
Tóbiás
,
T.
Furtenbacher
,
I.
Simkó
,
A. G.
Császár
,
M. L.
Diouf
,
F. M. J.
Cozijn
,
J. M. A.
Staa
,
E. J.
Salumbides
, and
W.
Ubachs
, “
Spectroscopic-network-assisted precision spectroscopy and its application to water
,”
Nat. Commun.
11
,
1708
(
2020
).
67.
S. G.
Kukolich
, “
Measurement of the molecular g values in H2O and D2O and hyperfine structure in H2O
,”
J. Chem. Phys.
50
,
3751
3755
(
1969
).
68.
G. Y.
Golubiatnikov
,
V. N.
Markov
,
A.
Guarnieri
, and
R.
Knöchel
, “
Hyperfine structure of H216O and H218O measured by Lamb-dip technique in the 180–560 GHz frequency range
,”
J. Mol. Spectrosc.
240
,
251
254
(
2006
).
69.
C.
Daussy
,
T.
Marrel
,
A.
Amy-Klein
,
C. T.
Nguyen
,
C. J.
Bordé
, and
C.
Chardonnet
, “
Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy
,”
Phys. Rev. Lett.
83
,
1554
1557
(
1999
).
70.
S. N.
Yurchenko
,
A. F.
Al-Refaie
, and
J.
Tennyson
, “
ExoCross: A general program for generating spectra from molecular line lists
,”
Astron. Astrophys.
614
,
A131
(
2018
); arXiv:1801.09803 [astro-ph.EP].
71.
A.
Campargue
,
S.
Kassi
,
K.
Pachucki
, and
J.
Komasa
, “
The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35 000 cm−1
,”
Phys. Chem. Chem. Phys.
14
,
802
815
(
2011
).
72.
A.
Yachmenev
,
G.
Yang
,
E.
Zak
,
S.
Yurchenko
, and
J.
Küpper
(
2022
). “
Supplementary information: The nuclear-spin-forbidden rovibrational transitions of water from first principles
,” Zenodo.
You do not currently have access to this content.