The adsorption and self-assembly structures of melamine molecules on an Ag(111) surface are studied by low temperature scanning tunneling microscopy (STM) combined with tip-enhanced Raman spectroscopy (TERS). Two ordered self-assembly phases of melamine molecules on Ag(111) were studied by STM and TERS, combining with first-principles simulations. The α-phase consists of flat-lying melamine molecules, while the β-phase consists of mixed up-standing/tilted melamine molecules. Moreover, dehydrogenation of melamine can be controlled by annealing the sample as well as by a tip-enhanced photo-catalytic effect. Our work demonstrates TERS as a powerful tool not only for investigating the configuration and vibration properties of molecules on a metal surface with high spatial resolution but also for manipulating the chemical reactions with tip and photo-induced effects.

1.
N. E.
Mircescu
,
M.
Oltean
,
V.
Chiş
, and
N.
Leopold
, “
FTIR, FT-Raman, SERS and DFT study on melamine
,”
Vib. Spectrosc.
62
,
165
171
(
2012
).
2.
H.
Horacek
and
R.
Grabner
, “
Advantages of flame retardants based on nitrogen compounds
,”
Polym. Degrad. Stab.
54
(
2
),
205
215
(
1996
).
3.
P. O.
Powers
, “
Phenol-, urea-, and melamine-formaldehyde plastics
,”
Ind. Eng. Chem.
45
(
5
),
1063
1066
(
1953
).
4.
M.
Dunky
, “
Urea–formaldehyde (UF) adhesive resins for wood
,”
Int. J. Adhes. Adhes.
18
(
2
),
95
107
(
1998
).
5.
Q.
Liang
,
B.
Shao
,
S.
Tong
,
Z.
Liu
,
L.
Tang
,
Y.
Liu
,
M.
Cheng
,
Q.
He
,
T.
Wu
,
Y.
Pan
,
J.
Huang
, and
Z.
Peng
, “
Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment
,”
Chem. Eng. J.
405
,
126951
(
2021
).
6.
F.
Silly
,
A. Q.
Shaw
,
M. R.
Castell
,
G. A. D.
Briggs
,
M.
Mura
,
N.
Martsinovich
, and
L.
Kantorovich
, “
Melamine structures on the Au(111) surface
,”
J. Phys. Chem. C
112
(
30
),
11476
11480
(
2008
).
7.
C. H.
Schmitz
,
J.
Ikonomov
, and
M.
Sokolowski
, “
Two commensurate hydrogen-bonded monolayer structures of melamine on Ag(111)
,”
Surf. Sci.
605
(
1-2
),
1
6
(
2011
).
8.
J.
Greenwood
,
H. A.
Früchtl
, and
C. J.
Baddeley
, “
Self-assembly of upright, partially dehydrogenated melamine on Pd(111)
,”
J. Phys. Chem. C
117
(
44
),
22874
22879
(
2013
).
9.
J.
Greenwood
,
H. A.
Früchtl
, and
C. J.
Baddeley
, “
Ordered growth of upright melamine species on Ni(111): A study with scanning tunnelling microscopy and reflection absorption infrared spectroscopy
,”
J. Phys. Chem. C
116
(
11
),
6685
6690
(
2012
).
10.
Y.-P.
Lin
,
O.
Ourdjini
,
L.
Giovanelli
,
S.
Clair
,
T.
Faury
,
Y.
Ksari
,
J.-M.
Themlin
,
L.
Porte
, and
M.
Abel
, “
Self-assembled melamine monolayer on Cu(111)
,”
J. Phys. Chem. C
117
(
19
),
9895
9902
(
2013
).
11.
L.
Wang
,
P.
Li
,
H.
Shi
,
Z.
Li
,
K.
Wu
, and
X.
Shao
, “
Thickness-dependent adsorption of melamine on Cu/Au(111) films
,”
J. Phys. Chem. C
121
(
14
),
7977
7984
(
2017
).
12.
S.
Pan
,
Q.
Fu
,
T.
Huang
,
A.
Zhao
,
B.
Wang
,
Y.
Luo
,
J.
Yang
, and
J.
Hou
, “
Design and control of electron transport properties of single molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
36
),
15259
15263
(
2009
).
13.
R.-P.
Wang
,
B.
Yang
,
Q.
Fu
,
Y.
Zhang
,
R.
Zhu
,
X.-R.
Dong
,
Y.
Zhang
,
B.
Wang
,
J.-L.
Yang
,
Y.
Luo
,
Z.-C.
Dong
, and
J. G.
Hou
, “
Raman detection of bond breaking and making of a chemisorbed up-standing single molecule at single-bond level
,”
J. Phys. Chem. Lett.
12
(
7
),
1961
1968
(
2021
).
14.
R. B.
Jaculbia
,
H.
Imada
,
K.
Miwa
,
T.
Iwasa
,
M.
Takenaka
,
B.
Yang
,
E.
Kazuma
,
N.
Hayazawa
,
T.
Taketsugu
, and
Y.
Kim
, “
Single-molecule resonance Raman effect in a plasmonic nanocavity
,”
Nat. Nanotechnol.
15
(
2
),
105
110
(
2020
).
15.
L.
Li
,
J. F.
Schultz
,
S.
Mahapatra
,
X.
Liu
,
C.
Shaw
,
X.
Zhang
,
M. C.
Hersam
, and
N.
Jiang
, “
Angstrom-scale spectroscopic visualization of interfacial interactions in an organic/borophene vertical heterostructure
,”
J. Am. Chem. Soc.
143
(
38
),
15624
15634
(
2021
).
16.
F.
Shao
,
W.
Wang
,
W.
Yang
,
Z.
Yang
,
Y.
Zhang
,
J.
Lan
,
A.
Dieter Schlüter
, and
R.
Zenobi
, “
In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111)
,”
Nat. Commun.
12
(
1
),
4557
(
2021
).
17.
H.
Li
,
Y.-F.
Zhang
,
X.-B.
Zhang
,
A.
Farrukh
,
Y.
Zhang
,
Y.
Zhang
, and
Z.-C.
Dong
, “
Probing the deformation of [12]cycloparaphenylene molecular nanohoops adsorbed on metal surfaces by tip-enhanced Raman spectroscopy
,”
J. Chem. Phys.
153
(
24
),
244201
(
2020
).
18.
J.
Lee
,
K. T.
Crampton
,
N.
Tallarida
, and
V. A.
Apkarian
, “
Visualizing vibrational normal modes of a single molecule with atomically confined light
,”
Nature
568
(
7750
),
78
82
(
2019
).
19.
S.
Mahapatra
,
L.
Li
,
J. F.
Schultz
, and
N.
Jiang
, “
Tip-enhanced Raman spectroscopy: Chemical analysis with nanoscale to angstrom scale resolution
,”
J. Chem. Phys.
153
(
1
),
010902
(
2020
).
20.
J.
Xu
,
X.
Zhu
,
S.
Tan
,
Y.
Zhang
,
B.
Li
,
Y.
Tian
,
H.
Shan
,
X.
Cui
,
A.
Zhao
,
Z.
Dong
,
J.
Yang
,
Y.
Luo
,
B.
Wang
, and
J. G.
Hou
, “
Determining structural and chemical heterogeneities of surface species at the single-bond limit
,”
Science
371
(
6531
),
818
822
(
2021
).
21.
Z.-F.
Cai
,
L.-Q.
Zheng
,
Y.
Zhang
, and
R.
Zenobi
, “
Molecular-scale chemical imaging of the orientation of an on-surface coordination complex by tip-enhanced Raman spectroscopy
,”
J. Am. Chem. Soc.
143
(
31
),
12380
12386
(
2021
).
22.
C.
Zhang
,
R. B.
Jaculbia
,
Y.
Tanaka
,
E.
Kazuma
,
H.
Imada
,
N.
Hayazawa
,
A.
Muranaka
,
M.
Uchiyama
, and
Y.
Kim
, “
Chemical identification and bond control of π-skeletons in a coupling reaction
,”
J. Am. Chem. Soc.
143
(
25
),
9461
9467
(
2021
).
23.
S.
Sheng
,
J.-b.
Wu
,
X.
Cong
,
W.
Li
,
J.
Gou
,
Q.
Zhong
,
P.
Cheng
,
P.-h.
Tan
,
L.
Chen
, and
K.
Wu
, “
Vibrational properties of a monolayer silicene sheet studied by tip-enhanced Raman spectroscopy
,”
Phys. Rev. Lett.
119
(
19
),
196803
(
2017
).
24.
S.
Sheng
,
W.
Li
,
J.
Gou
,
P.
Cheng
,
L.
Chen
, and
K.
Wu
, “
Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials’ studies
,”
Rev. Sci. Instrum.
89
(
5
),
053107
(
2018
).
25.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
26.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for open-shell transition metals
,”
Phys. Rev. B
48
(
17
),
13115
13118
(
1993
).
27.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
29.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
30.
A.
Fonari
and
S.
Stauffer
, https://github.com/raman-sc/VASP,
2013
31.
K.
Momma
and
F.
Izumi
, “
VESTA: A three-dimensional visualization system for electronic and structural analysis
,”
J. Appl. Crystallogr.
41
(
3
),
653
658
(
2008
).
32.
M.
Simenas
and
E. E.
Tornau
, “
A model of melamine molecules ordering on metal surfaces
,”
J. Chem. Phys.
141
(
5
),
054701
(
2014
).
33.
M.
Sassi
,
V.
Oison
, and
J.-M.
Debierre
, “
First principle study of a bimolecular thin film on Ag(111) surface
,”
Surf. Sci.
602
(
17
),
2856
2862
(
2008
).
34.
S.
Liu
,
M.
Müller
,
Y.
Sun
,
I.
Hamada
,
A.
Hammud
,
M.
Wolf
, and
T.
Kumagai
, “
Resolving the correlation between tip-enhanced resonance Raman scattering and local electronic states with 1 nm resolution
,”
Nano Lett.
19
(
8
),
5725
5731
(
2019
).
35.
R.
Zhang
,
Y.
Zhang
,
Z. C.
Dong
,
S.
Jiang
,
C.
Zhang
,
L. G.
Chen
,
L.
Zhang
,
Y.
Liao
,
J.
Aizpurua
,
Y.
Luo
,
J. L.
Yang
, and
J. G.
Hou
, “
Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
,”
Nature
498
(
7452
),
82
86
(
2013
).
36.
B.
Pettinger
,
K. F.
Domke
,
D.
Zhang
,
G.
Picardi
, and
R.
Schuster
, “
Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement
,”
Surf. Sci.
603
(
10
),
1335
1341
(
2009
).
37.
T.
Deckert-Gaudig
,
A.
Taguchi
,
S.
Kawata
, and
V.
Deckert
, “
Tip-enhanced Raman spectroscopy - from early developments to recent advances
,”
Chem. Soc. Rev.
46
(
13
),
4077
4110
(
2017
).
38.
L.
Olesen
,
M.
Brandbyge
,
M. R.
Sørensen
,
K. W.
Jacobsen
,
E.
Lægsgaard
,
I.
Stensgaard
, and
F.
Besenbacher
, “
Apparent barrier height in scanning tunneling microscopy revisited
,”
Phys. Rev. Lett.
76
(
9
),
1485
1488
(
1996
).
39.
L.-B.
Zhao
,
M.
Zhang
,
Y.-F.
Huang
,
C. T.
Williams
,
D.-Y.
Wu
,
B.
Ren
, and
Z.-Q.
Tian
, “
Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds
,”
J. Phys. Chem. Lett.
5
(
7
),
1259
1266
(
2014
).
40.
M.
Sun
,
Z.
Zhang
,
L.
Chen
,
Q.
Li
,
S.
Sheng
,
H.
Xu
, and
P.
Song
, “
Plasmon-driven selective reductions revealed by tip-enhanced Raman spectroscopy
,”
Adv. Mater. Interfaces
1
(
5
),
1300125
(
2014
).
41.
A. O.
Govorov
and
H. H.
Richardson
, “
Generating heat with metal nanoparticles
,”
Nano Today
2
(
1
),
30
38
(
2007
).

Supplementary Material

You do not currently have access to this content.