Bonding energies play an essential role in describing the relative stability of molecules in chemical space. Therefore, methods employed to search chemical space need to capture the bonding behavior for a wide range of molecules, including radicals. In this work, we investigate the ability of quantum alchemy to capture the bonding behavior of hypothetical chemical compounds, specifically diatomic molecules involving hydrogen with various electronic structures. We evaluate equilibrium bond lengths, ionization energies, and electron affinities of these fundamental systems. We compare and contrast how well manual quantum alchemy calculations, i.e., quantum mechanics calculations in which the nuclear charge is altered, and quantum alchemy approximations using a Taylor series expansion can predict these molecular properties. Our results suggest that while manual quantum alchemy calculations outperform Taylor series approximations, truncations of Taylor series approximations after the second order provide the most accurate Taylor series predictions. Furthermore, these results suggest that trends in quantum alchemy predictions are generally dependent on the predicted property (i.e., equilibrium bond length, ionization energy, or electron affinity). Taken together, this work provides insight into how quantum alchemy predictions using a Taylor series expansion may be applied to future studies of non-singlet systems as well as the challenges that remain open for predicting the bonding behavior of such systems.

1.
J. E.
Saal
,
A. O.
Oliynyk
, and
B.
Meredig
, “
Machine learning in materials discovery: Confirmed predictions and their underlying approaches
,”
Annu. Rev. Mater. Res.
50
,
49
69
(
2020
).
2.
J. A.
Keith
,
V.
Vassilev-Galindo
,
B.
Cheng
,
S.
Chmiela
,
M.
Gastegger
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Combining machine learning and computational chemistry for predictive insights into chemical systems
,”
Chem. Rev.
121
,
9816
9872
(
2021
).
3.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Alchemical perturbation density functional theory
,”
Phys. Rev. Res.
2
,
023220
(
2020
).
4.
O. A.
von Lilienfeld
, “
Accurate ab initio energy gradients in chemical compound space
,”
J. Chem. Phys.
131
,
164102
(
2009
).
5.
G.
Domenichini
,
G. F.
von Rudorff
, and
O. A.
von Lilienfeld
, “
Effects of perturbation order and basis set on alchemical predictions
,”
J. Chem. Phys.
153
,
144118
(
2020
).
6.
S.
Fias
,
K. Y. S.
Chang
, and
O. A.
Von Lilienfeld
, “
Alchemical normal modes unify chemical space
,”
J. Phys. Chem. Lett.
10
,
30
39
(
2019
).
7.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Rapid and accurate molecular deprotonation energies from quantum alchemy
,”
Phys. Chem. Chem. Phys.
22
,
10519
10525
(
2020
).
8.
C. D.
Griego
,
K.
Saravanan
, and
J. A.
Keith
, “
Benchmarking computational alchemy for carbide, nitride, and oxide catalysts
,”
Adv. Theory Simul.
2
,
1800142
(
2019
).
9.
C. D.
Griego
,
J. R.
Kitchin
, and
J. A.
Keith
, “
Acceleration of catalyst discovery with easy, fast, and reproducible computational alchemy
,”
Int. J. Quantum Chem.
121
,
e26380
(
2020
).
10.
D.
Sheppard
,
G.
Henkelman
, and
O. A.
von Lilienfeld
, “
Alchemical derivatives of reaction energetics
,”
J. Chem. Phys.
133
,
084104
(
2010
).
11.
E. A.
Eikey
,
A. M.
Maldonado
,
C. D.
Griego
,
G. F.
von Rudorff
, and
J. A.
Keith
, “
Evaluating quantum alchemy of atoms with thermodynamic cycles: Beyond ground electronic states
,”
J. Chem. Phys.
156
,
064106
(
2022
).
12.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
et al., “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
13.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
 et al., “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
14.
Q.
Sun
, “
Libcint: An efficient general integral library for Gaussian basis functions
,”
J. Comput. Chem.
36
,
1664
1671
(
2015
).
15.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, Jr.
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg
,”
Theor. Chem. Acc.
128
,
69
82
(
2011
).
16.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
17.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
1371
(
1993
).
18.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
19.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
20.
L.-P.
Wang
and
C.
Song
, “
Geometry optimization made simple with translation and rotation coordinates
,”
J. Chem. Phys.
144
,
214108
(
2016
).
21.
R. D.
Johnson
 III
, NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database No. 101, Release 21, available http://cccbdb.nist.gov/ October 26, 2021,
National Institute of Standards and Technology
,
2020
.
22.
W. M.
Haynes
,
D. R.
Lide
, and
T. J.
Bruno
, in
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC Press
,
2017
), Vols. 2016 and 2017.
23.
R. P.
Feynman
, “
Forces in molecules
,”
Phys. Rev.
56
,
340
343
(
1939
).
24.
R.
Balawender
,
M. A.
Welearegay
,
M.
Lesiuk
,
F.
De Proft
, and
P.
Geerlings
, “
Exploring chemical space with the alchemical derivatives
,”
J. Chem. Theory Comput.
9
,
5327
5340
(
2013
).
25.
R.
Balawender
,
M.
Lesiuk
,
F.
De Proft
, and
P.
Geerlings
, “
Exploring chemical space with alchemical derivatives: BN-simultaneous substitution patterns in C60
,”
J. Chem. Theory Comput.
14
,
1154
1168
(
2018
).
26.
R.
Balawender
,
M.
Lesiuk
,
F.
De Proft
,
C.
Van Alsenoy
, and
P.
Geerlings
, “
Exploring chemical space with alchemical derivatives: Alchemical transformations of H through Ar and their ions as a proof of concept
,”
Phys. Chem. Chem. Phys.
21
,
23865
23879
(
2019
).
27.
G. F.
von Rudorff
, “
Arbitrarily accurate quantum alchemy
,”
J. Chem. Phys.
155
,
224103
(
2021
).
28.
M.
Baer
, “
maroba/findiff: A Python package for finite difference numerical derivatives and partial differential equations in any number of dimensions
,” (
2018
) Github: https://github.com/maroba/findiff.
29.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).

Supplementary Material

You do not currently have access to this content.