Two-dimensional electronic-vibrational (2DEV) spectra have the capacity to probe electron–nuclear interactions in molecules by measuring correlations between initial electronic excitations and vibrational transitions at a later time. The trajectory-based semiclassical optimized mean trajectory approach is applied to compute 2DEV spectra for a system with excitonically coupled electronic excited states vibronically coupled to a chromophore vibration. The chromophore mode is in turn coupled to a bath, inducing redistribution of vibrational populations. The lineshapes and delay-time dynamics of the resulting spectra compare well with benchmark calculations, both at the level of the observable and with respect to contributions from distinct spectroscopic processes.

1.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
New York
,
2011
).
2.
D. M.
Jonas
,
Annu. Rev. Phys. Chem.
54
,
425
(
2003
).
3.
M. L.
Cowan
,
J. P.
Ogilvie
, and
R. J. D.
Miller
,
Chem. Phys. Lett.
386
,
184
(
2004
).
4.
T.
Brixner
,
I. V.
Stiopkin
, and
G. R.
Fleming
,
Opt. Lett.
29
,
884
(
2004
).
5.
P. F.
Tekavec
,
J. A.
Myers
,
K. L. M.
Lewis
, and
J. P.
Ogilvie
,
Opt. Lett.
34
,
1390
(
2009
).
6.
D. B.
Turner
,
Y.
Hassan
, and
G. D.
Scholes
,
Nano Lett.
12
,
880
(
2012
).
7.
T. L.
Courtney
,
Z. W.
Fox
,
K. M.
Slenkamp
, and
M.
Khalil
,
J. Chem. Phys.
143
,
154201
(
2015
).
8.
J. D.
Gaynor
and
M.
Khalil
,
J. Chem. Phys.
147
,
094202
(
2017
).
9.
J. D.
Gaynor
,
A.
Petrone
,
X.
Li
, and
M.
Khalil
,
J. Phys. Chem. Lett.
9
,
6289
(
2018
).
10.
J. D.
Gaynor
,
J.
Sandwisch
, and
M.
Khalil
,
Nat. Commun.
10
,
5621
(
2019
).
11.
Z. W.
Fox
,
T. J.
Blair
, and
M.
Khalil
,
J. Phys. Chem. Lett.
11
,
1558
(
2020
).
12.
M.
Cho
,
J. Chem. Phys.
112
,
9002
(
2000
).
13.
M.
Cho
,
J. Chem. Phys.
113
,
7746
(
2000
).
14.
M.
Bonn
,
C.
Hess
,
J. H.
Miners
,
T. F.
Heinz
,
H. J.
Bakker
, and
M.
Cho
,
Phys. Rev. Lett.
86
,
1566
(
2001
).
15.
T. A. A.
Oliver
,
N. H. C.
Lewis
, and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
10061
(
2014
).
16.
H.
Dong
,
N. H. C.
Lewis
,
T. A. A.
Oliver
, and
G. R.
Fleming
,
J. Chem. Phys.
142
,
174201
(
2015
).
17.
N. H. C.
Lewis
,
H.
Dong
,
T. A. A.
Oliver
, and
G. R.
Fleming
,
J. Chem. Phys.
142
,
174202
(
2015
).
18.
F.
Terenziani
and
A.
Painelli
,
Phys. Chem. Chem. Phys.
17
,
13074
(
2015
).
19.
E. C.
Wu
,
E. A.
Arsenault
,
P.
Bhattacharyya
,
N. H. C.
Lewis
, and
G. R.
Fleming
,
Faraday Discuss.
216
,
116
(
2019
).
20.
P.
Bhattacharyya
and
G. R.
Fleming
,
J. Phys. Chem. Lett.
10
,
2081
(
2019
).
21.
P.
Bhattacharyya
and
G. R.
Fleming
,
J. Chem. Phys.
153
,
044119
(
2020
).
22.
M.
Cho
and
G. R.
Fleming
,
J. Phys. Chem. B
124
,
11222
(
2020
).
23.
J. D.
Gaynor
,
R. B.
Weakly
, and
M.
Khalil
,
J. Chem. Phys.
154
,
184201
(
2021
).
24.
J. D.
Gaynor
and
M.
Khalil
,
J. Chem. Phys.
154
,
184202
(
2021
).
25.
R. F.
Loring
,
J. Chem. Phys.
146
,
144016
(
2017
).
26.
S. J.
Cotton
and
W. H.
Miller
,
J. Phys. Chem. A
117
,
7190
(
2013
).
27.
S. J.
Cotton
,
K.
Igumenshchev
, and
W. H.
Miller
,
J. Chem. Phys.
141
,
084104
(
2014
).
28.
W. H.
Miller
and
S. J.
Cotton
,
J. Chem. Phys.
145
,
081102
(
2016
).
29.
S. J.
Cotton
and
W. H.
Miller
,
J. Chem. Phys.
150
,
104101
(
2019
).
30.
S. J.
Cotton
and
W. H.
Miller
,
J. Chem. Phys.
150
,
194110
(
2019
).
31.
J.
Provazza
and
D. F.
Coker
,
J. Chem. Phys.
148
,
181102
(
2018
).
32.
A. A.
Kananenka
,
C.-Y.
Hsieh
,
J.
Cao
, and
E.
Geva
,
J. Phys. Chem. Lett.
9
,
319
(
2018
).
33.
J. S.
Sandoval
,
A.
Mandal
, and
P.
Huo
,
J. Chem. Phys.
149
,
044115
(
2018
).
34.
Y.
Xie
,
J.
Zheng
, and
Z.
Lan
,
J. Chem. Phys.
149
,
174105
(
2018
).
35.
X.
Gao
,
M. A. C.
Saller
,
Y.
Liu
,
A.
Kelly
,
J. O.
Richardson
, and
E.
Geva
,
J. Chem. Theory Comput.
16
,
2883
(
2020
).
36.
X.
Gao
,
Y.
Lai
, and
E.
Geva
,
J. Chem. Theory Comput.
16
,
6465
(
2020
).
37.
X.
Gao
and
E.
Geva
,
J. Chem. Theory Comput.
16
,
6491
(
2020
).
38.
Y.
Liu
,
X.
Gao
,
Y.
Lai
,
E.
Mulvihill
, and
E.
Geva
,
J. Chem. Theory Comput.
16
,
4479
(
2020
).
39.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
153
,
194110
(
2020
).
40.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
153
,
194109
(
2020
).
41.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
156
,
024108
(
2022
).
42.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
43.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
72
,
2272
(
1980
).
44.
M.
Thoss
and
G.
Stock
,
Phys. Rev. A
59
,
64
(
1999
).
45.
M.
Thoss
,
W. H.
Miller
, and
G.
Stock
,
J. Chem. Phys.
112
,
10282
(
2000
).
46.
M.
Alemi
and
R. F.
Loring
,
J. Phys. Chem. B
119
,
8950
(
2015
).
47.
M.
Alemi
and
R. F.
Loring
,
J. Chem. Phys.
142
,
212417
(
2015
).
48.
K.
Polley
and
R. F.
Loring
,
J. Phys. Chem. B
124
,
9913
(
2020
).
49.
K.
Polley
and
R. F.
Loring
,
J. Chem. Phys.
153
,
204103
(
2020
).
50.
K.
Polley
and
R. F.
Loring
,
J. Chem. Phys.
156
,
124108
(
2022
).
51.
K.
Polley
and
R. F.
Loring
,
J. Chem. Phys.
154
,
194110
(
2021
).
52.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
53.
Y.
Tanimura
,
Phys. Rev. A
41
,
6676
(
1990
).
54.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
55.
A.
Ishizaki
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
084501
(
2006
).
56.
Y.
Tanimura
,
J. Chem. Phys.
141
,
044114
(
2014
).
57.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
,
J. Chem. Phys.
131
,
094502
(
2009
).
58.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
130
,
084105
(
2009
).
59.
J.
Chen
and
N.
Makri
,
Chem. Phys.
370
,
15
(
2010
).
60.
J.
Zhu
,
S.
Kais
,
P.
Rebentrost
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
115
,
1531
1537
(
2011
).
61.
Y.
Yan
,
J.
Jin
,
R.-X.
Xu
, and
X.
Zheng
,
Front. Phys.
11
,
110306
(
2016
).
62.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
,
J. Chem. Phys.
150
,
184109
(
2019
).
63.
N.
Makri
,
J. Chem. Phys.
103
,
2823
(
1999
).
64.
P. L.
Walters
,
T. C.
Allen
, and
N.
Makri
,
J. Comput. Chem.
38
,
110
(
2017
).
65.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
4828
(
1999
).
66.
D. W. H.
Swenson
,
T.
Levy
,
G.
Cohen
,
E.
Rabani
, and
W. H.
Miller
,
J. Chem. Phys.
134
,
164103
(
2011
).
67.
X.
Gao
and
E.
Geva
,
J. Phys. Chem. A
124
,
11006
(
2020
).
68.
P. L.
McRobbie
and
E.
Geva
,
J. Phys. Chem. A
113
,
10425
(
2009
).
69.
J.
Provazza
,
R.
Tempelaar
, and
D. F.
Coker
,
J. Chem. Phys.
155
,
014108
(
2021
).
70.
J. H.
Fetherolf
and
T. C.
Berkelbach
,
J. Chem. Phys.
147
,
244109
(
2017
).
71.
M. E.
Tuckerman
,
G. J.
Martyna
, and
B. J.
Berne
,
J. Chem. Phys.
93
,
1287
(
1990
).
72.
M.
Watanabe
and
M.
Karplus
,
J. Chem. Phys.
99
,
8063
(
1993
).
73.
K.
Polley
and
R. F.
Loring
,
J. Chem. Phys.
150
,
164114
(
2019
).
74.
S. J.
Cotton
and
W. H.
Miller
,
J. Phys. Chem. A
119
,
12138
(
2015
).
75.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
).
77.
A.
Ishizaki
and
Y.
Tanimura
,
J. Chem. Phys.
123
,
014503
(
2005
).
78.
M.
Gerace
and
R. F.
Loring
,
J. Chem. Phys.
138
,
124104
(
2013
).
79.
M.
Gerace
and
R. F.
Loring
,
J. Phys. Chem. B
117
,
15452
(
2013
).
80.
G. C.
Schatz
and
T.
Mulloney
,
J. Phys. Chem.
83
,
989
(
1979
).
81.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).

Supplementary Material

You do not currently have access to this content.