Accelerated molecular-dynamics (MD) simulations based on hyperdynamics (HD) can significantly improve the efficiency of MD simulations of condensed-phase systems that evolve via rare events. However, such simulations are not generally easy to apply since appropriate boosts are usually unknown. In this work, we developed a method called OptiBoost to adjust the value of the boost in HD simulations based on the bond-boost method. We demonstrated the OptiBoost method in simulations on a cosine potential and applied it in three different systems involving Ag diffusion on Ag(100) in vacuum and in ethylene glycol solvent. In all cases, OptiBoost was able to predict safe and effective values of the boost, indicating that the OptiBoost protocol is an effective way to advance the applicability of HD simulations.

1.
A. F.
Voter
,
J. Chem. Phys.
106
,
4665
(
1997
).
2.
A. F.
Voter
,
Phys. Rev. Lett.
78
,
3908
(
1997
).
3.
M. R.
Sorensen
and
A. F.
Voter
,
J. Chem. Phys.
112
,
9599
(
2004
).
4.
A. F.
Voter
,
Phys. Rev. B
57
,
R13985
(
1998
).
5.
D.
Perez
 et al.,
J. Chem. Theory Comput.
12
,
18
(
2016
).
6.
D.
Hamelberg
,
J.
Mongan
, and
J. A.
McCammon
,
J. Chem. Phys.
120
,
11919
(
2004
).
7.
K.
Ganeshan
,
M. J.
Hossain
, and
A. C. T.
van Duin
,
Mol. Simul.
45
,
1265
(
2019
).
8.
C. F.
Abrams
and
E.
Vanden-Eijnden
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
4961
(
2010
).
9.
R. A.
Miron
and
K. A.
Fichthorn
,
Phys. Rev. B
72
,
035415
(
2005
).
10.
K. E.
Becker
,
M. H.
Mignogna
, and
K. A.
Fichthorn
,
Phys. Rev. Lett.
102
,
046101
(
2009
).
11.
R. A.
Miron
and
K. A.
Fichthorn
,
Phys. Rev. Lett.
93
,
128301
(
2004
).
12.
K. A.
Fichthorn
 et al.,
J. Phys.: Condens. Matter
21
,
084212
(
2009
).
13.
C.
Huang
,
D.
Perez
, and
A. F.
Voter
,
J. Chem. Phys.
143
,
074113
(
2015
).
14.
S. Y.
Kim
,
D.
Perez
, and
A. F.
Voter
,
J. Chem. Phys.
139
,
144110
(
2013
).
15.
T.
Cheng
 et al.,
J. Am. Chem. Soc.
136
,
9434
(
2014
).
16.
S. J.
Plimpton
,
D.
Perez
, and
A. F.
Voter
,
J. Chem. Phys.
153
,
054116
(
2020
).
17.
R. A.
Miron
and
K. A.
Fichthorn
,
J. Chem. Phys.
119
,
6210
(
2003
).
18.
K. A.
Fichthorn
and
S.
Mubin
,
Comput. Mater. Sci.
100
,
104
(
2015
).
19.
Y.
Xia
 et al.,
Angew. Chem., Int. Ed.
48
,
60
(
2009
).
21.
X.
Qi
and
K. A.
Fichthorn
,
Nanoscale
9
,
15635
(
2017
).
22.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
23.
P. L.
Williams
,
Y.
Mishin
, and
J. C.
Hamilton
,
Modell. Simul. Mater. Sci. Eng.
14
,
817
(
2006
).
24.
Y.
Zhou
,
W. A.
Saidi
, and
K. A.
Fichthorn
,
J. Phys. Chem. C
118
,
3366
(
2014
).
25.
O.
Guvench
 et al.,
J. Comput. Chem.
29
,
2543
(
2008
).
26.
K.
Vanommeslaeghe
 et al.,
J. Comput. Chem.
31
,
671
(
2010
).
27.
I.
Vorobyov
 et al.,
J. Chem. Theory Comput.
3
,
1120
(
2007
).
28.
Materials Handbook
, 2nd ed. (
Springer-Verlag
,
London
,
2008
).
30.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
You do not currently have access to this content.