The development of coarse-grained (CG) molecular models typically requires a time-consuming iterative tuning of parameters in order to have the approximated CG models behave correctly and consistently with, e.g., available higher-resolution simulation data and/or experimental observables. Automatic data-driven approaches are increasingly used to develop accurate models for molecular dynamics simulations. However, the parameters obtained via such automatic methods often make use of specifically designed interaction potentials and are typically poorly transferable to molecular systems or conditions other than those used for training them. Using a multi-objective approach in combination with an automatic optimization engine (SwarmCG), here, we show that it is possible to optimize CG models that are also transferable, obtaining optimized CG force fields (FFs). As a proof of concept, here, we use lipids for which we can avail reference experimental data (area per lipid and bilayer thickness) and reliable atomistic simulations to guide the optimization. Once the resolution of the CG models (mapping) is set as an input, SwarmCG optimizes the parameters of the CG lipid models iteratively and simultaneously against higher-resolution simulations (bottom-up) and experimental data (top-down references). Including different types of lipid bilayers in the training set in a parallel optimization guarantees the transferability of the optimized lipid FF parameters. We demonstrate that SwarmCG can reach satisfactory agreement with experimental data for different resolution CG FFs. We also obtain stimulating insights into the precision-resolution balance of the FFs. The approach is general and can be effectively used to develop new FFs and to improve the existing ones.

1.
J.
Abellón-Ruiz
 et al, “
Structural basis for maintenance of bacterial outer membrane lipid asymmetry
,”
Nat. Microbiol.
2
,
1616
1623
(
2017
).
2.
F. J.
Van Eerden
,
M. N.
Melo
,
P. W. J. M.
Frederix
,
X.
Periole
, and
S. J.
Marrink
, “
Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex
,”
Nat. Commun.
8
,
15214
(
2017
).
3.
H.-Y.
Yen
 et al, “
PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling
,”
Nature
559
,
423
427
(
2018
).
4.
C.
Hoffmann
,
A.
Centi
,
R.
Menichetti
, and
T.
Bereau
, “
Molecular dynamics trajectories for 630 coarse-grained drug-membrane permeations
,”
Sci. Data
7
,
51
(
2020
).
5.
P. C. T.
Souza
 et al, “
Protein–ligand binding with the coarse-grained Martini model
,”
Nat. Commun.
11
,
3714
(
2020
).
6.
M.
Heidenreich
 et al, “
Designer protein assemblies with tunable phase diagrams in living cells
,”
Nat. Chem. Biol.
16
,
939
945
(
2020
).
7.
M.
Vögele
,
J.
Köfinger
, and
G.
Hummer
, “
Hydrodynamics of diffusion in lipid membrane simulations
,”
Phys. Rev. Lett.
120
,
268104
(
2018
).
8.
M.
D’Agostino
,
H. J.
Risselada
,
A.
Lürick
,
C.
Ungermann
, and
A.
Mayer
, “
A tethering complex drives the terminal stage of SNARE-dependent membrane fusion
,”
Nature
551
,
634
638
(
2017
).
9.
D.
Bochicchio
,
M.
Salvalaglio
, and
G. M.
Pavan
, “
Into the dynamics of a supramolecular polymer at submolecular resolution
,”
Nat. Commun.
8
,
147
(
2017
).
10.
A.
Sarkar
 et al, “
Self-sorted, random, and block supramolecular copolymers via sequence controlled, multicomponent self-assembly
,”
J. Am. Chem. Soc.
142
,
7606
7617
(
2020
).
11.
S.
Datta
 et al, “
Self-assembled poly-catenanes from supramolecular toroidal building blocks
,”
Nature
583
,
400
405
(
2020
).
12.
S.
Bottaro
and
K.
Lindorff-Larsen
, “
Biophysical experiments and biomolecular simulations: A perfect match?
,”
Science
361
,
355
360
(
2018
).
13.
A. P.
Lyubartsev
and
A.
Laaksonen
, “
Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach
,”
Phys. Rev. E
52
,
3730
3737
(
1995
).
14.
W.
Tschöp
,
K.
Kremer
,
J.
Batoulis
,
T.
Bürger
, and
O.
Hahn
, “
Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates
,”
Acta Polym.
49
,
61
74
(
1998
).
15.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
, “
Deriving effective mesoscale potentials from atomistic simulations
,”
J. Comput. Chem.
24
,
1624
1636
(
2003
).
16.
S.
Izvekov
,
M.
Parrinello
,
C. J.
Burnham
, and
G. A.
Voth
, “
Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching
,”
J. Chem. Phys.
120
,
10896
10913
(
2004
).
17.
S.
Izvekov
and
G. A.
Voth
, “
A multiscale coarse-graining method for biomolecular systems
,”
J. Phys. Chem. B
109
,
2469
2473
(
2005
).
18.
W. G.
Noid
 et al, “
The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models
,”
J. Chem. Phys.
128
,
244114
(
2008
).
19.
T. C.
Moore
,
C. R.
Iacovella
, and
C.
McCabe
, “
Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion
,”
J. Chem. Phys.
140
,
224104
(
2014
).
20.
J. F.
Rudzinski
and
W. G.
Noid
, “
A generalized-Yvon-Born-Green method for coarse-grained modeling
,”
Eur. Phys. J.: Spec. Top.
224
,
2193
2216
(
2015
).
21.
K. K.
Bejagam
,
S.
Singh
,
Y.
An
, and
S. A.
Deshmukh
, “
Machine-learned coarse-grained models
,”
J. Phys. Chem. Lett.
9
,
4667
4672
(
2018
).
22.
K. K.
Bejagam
,
S.
Singh
,
Y.
An
,
C.
Berry
, and
S. A.
Deshmukh
, “
PSO-assisted development of new transferable coarse-grained water models
,”
J. Phys. Chem. B
122
,
1958
1971
(
2018
).
23.
C.
Empereur-Mot
 et al, “
Swarm-CG: Automatic parametrization of bonded terms in MARTINI-based coarse-grained models of simple to complex molecules via fuzzy self-tuning particle swarm optimization
,”
ACS Omega
5
,
32823
32843
(
2020
).
24.
P. C. T.
Souza
 et al, “
Martini 3: A general purpose force field for coarse-grained molecular dynamics
,”
Nat. Methods
18
,
382
388
(
2021
).
25.
J.
Wang
 et al, “
Machine learning of coarse-grained molecular dynamics force fields
,”
ACS Cent. Sci.
5
,
755
767
(
2019
).
26.
B. E.
Husic
 et al, “
Coarse graining molecular dynamics with graph neural networks
,”
J. Chem. Phys.
153
,
194101
(
2020
).
27.
Z.
Jarin
,
J.
Newhouse
, and
G. A.
Voth
, “
Coarse-grained force fields from the perspective of statistical mechanics: Better understanding of the origins of a MARTINI hangover
,”
J. Chem. Theory Comput.
17
,
1170
1180
(
2021
).
28.
W. G.
Noid
 et al, “
The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models
,”
J. Chem. Phys.
128
,
244115
(
2008
).
29.
L.-P.
Wang
,
T. J.
Martinez
, and
V. S.
Pande
, “
Building force fields: An automatic, systematic, and reproducible approach
,”
J. Phys. Chem. Lett.
5
,
1885
1891
(
2014
).
30.
L.-P.
Wang
,
J.
Chen
, and
T.
Van Voorhis
, “
Systematic parametrization of polarizable force fields from quantum chemistry data
,”
J. Chem. Theory Comput.
9
,
452
460
(
2013
).
31.
M. S.
Shell
, “
The relative entropy is fundamental to multiscale and inverse thermodynamic problems
,”
J. Chem. Phys.
129
,
144108
(
2008
).
32.
J. W.
Mullinax
and
W. G.
Noid
, “
A generalized-Yvon–Born–Green theory for determining coarse-grained interaction potentials
,”
J. Phys. Chem. C
114
,
5661
5674
(
2010
).
33.
O.
Conway
,
Y.
An
,
K. K.
Bejagam
, and
S. A.
Deshmukh
, “
Development of transferable coarse-grained models of amino acids
,”
Mol. Syst. Des. Eng.
5
,
675
685
(
2020
).
34.
S.
Yang
,
Z.
Cui
, and
J.
Qu
, “
A coarse-grained model for epoxy molding compound
,”
J. Phys. Chem. B
118
,
1660
1669
(
2014
).
35.
F. D.
Hofmann
,
M.
Devereux
,
A.
Pfaltz
, and
M.
Meuwly
, “
Toward force fields for atomistic simulations of iridium-containing complexes
,”
J. Comput. Chem.
35
,
18
29
(
2014
).
36.
L.
Huang
and
B.
Roux
, “
Automated force field parameterization for nonpolarizable and polarizable atomic models based on ab initio target data
,”
J. Chem. Theory Comput.
9
,
3543
3556
(
2013
).
37.
J. F.
Rudzinski
and
W. G.
Noid
, “
Bottom-up coarse-graining of peptide ensembles and helix–coil transitions
,”
J. Chem. Theory Comput.
11
,
1278
1291
(
2015
).
38.
B.
Bayramoglu
and
R.
Faller
, “
Coarse-grained modeling of polystyrene in various environments by iterative Boltzmann inversion
,”
Macromolecules
45
,
9205
9219
(
2012
).
39.
B.
Bayramoglu
and
R.
Faller
, “
Modeling of polystyrene under confinement: Exploring the limits of iterative Boltzmann inversion
,”
Macromolecules
46
,
7957
7976
(
2013
).
40.
P.
Ganguly
and
N. F. A.
van der Vegt
, “
Representability and transferability of Kirkwood–Buff iterative Boltzmann inversion models for multicomponent aqueous systems
,”
J. Chem. Theory Comput.
9
,
5247
5256
(
2013
).
41.
P.
Banerjee
,
S.
Roy
, and
N.
Nair
, “
Coarse-grained molecular dynamics force-field for polyacrylamide in infinite dilution derived from iterative Boltzmann inversion and MARTINI force-field
,”
J. Phys. Chem. B
122
,
1516
1524
(
2018
).
42.
K.
Prasitnok
and
M. R.
Wilson
, “
A coarse-grained model for polyethylene glycol in bulk water and at a water/air interface
,”
Phys. Chem. Chem. Phys.
15
,
17093
(
2013
).
43.
J.
Caceres-Delpiano
,
L.-P.
Wang
, and
J. W.
Essex
, “
The automated optimisation of a coarse-grained force field using free energy data
,”
Phys. Chem. Chem. Phys.
23
,
24842
24851
(
2021
).
44.
S.
Izvekov
and
G. A.
Voth
, “
Multiscale coarse-graining of mixed phospholipid/cholesterol bilayers
,”
J. Chem. Theory Comput.
2
,
637
648
(
2006
).
45.
S.
Kmiecik
 et al, “
Coarse-grained protein models and their applications
,”
Chem. Rev.
116
,
7898
7936
(
2016
).
46.
Y.
An
,
K. K.
Bejagam
, and
S. A.
Deshmukh
, “
Development of new transferable coarse-grained models of hydrocarbons
,”
J. Phys. Chem. B
122
,
7143
7153
(
2018
).
47.
Y.
An
,
S.
Singh
,
K. K.
Bejagam
, and
S. A.
Deshmukh
, “
Development of an accurate coarse-grained model of poly(acrylic acid) in explicit solvents
,”
Macromolecules
52
,
4875
4887
(
2019
).
48.
J.
Kennedy
and
R.
Eberhart
, “
Particle swarm optimization
,” in
Proceedings of the ICNN’95–International Conference on Neural Networks
(
IEEE
,
1995
), Vol. 4, pp.
1942
1948
.
49.
M. S.
Nobile
 et al, “
Fuzzy self-tuning PSO: A settings-free algorithm for global optimization
,”
Swarm Evol. Comput.
39
,
70
85
(
2018
).
50.
C.
Villani
,
Optimal Transport: Old and New
(
Springer-Verlag
,
2009
).
51.
C.
Lu
 et al, “
OPLS4: Improving force field accuracy on challenging regimes of chemical space
,”
J. Chem. Theory Comput.
17
,
4291
4300
(
2021
).
52.
M. M.
Law
and
J. M.
Hutson
, “
I-NoLLS: A program for interactive nonlinear least-squares fitting of the parameters of physical models
,”
Comput. Phys. Commun.
102
,
252
268
(
1997
).
53.
D.
Marquardt
 et al, “
The structures of polyunsaturated lipid bilayers by joint refinement of neutron and X-ray scattering data
,”
Chem. Phys. Lipids
229
,
104892
(
2020
).
54.
N.
Kučerka
,
M.-P.
Nieh
, and
J.
Katsaras
, “
Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature
,”
Biochim. Biophys. Acta, Biomembr.
1808
,
2761
2771
(
2011
).
55.
S.
Sengupta
,
S.
Basak
, and
R. A.
Peters
, “
Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives
,”
Mach. Learn. Knowl. Extr.
1
,
157
191
(
2019
).
56.
N.
Michaud‐Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
57.
R. J.
Gowers
,
M.
Linke
,
J.
Barnoud
,
T. J. E.
Reddy
,
M. N.
Melo
,
S. L.
Seyler
,
D. L.
Dotson
,
J.
Domanski
,
S.
Buchoux
,
I. M.
Kenney
, and
O.
Beckstein
, “
MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations
,” in , edited by S. Benthall and S. Rostrup, Austin, TX, 2016 (
SciPy
,
2016
), pp.
98
105
.
58.
O.
Pele
and
M.
Werman
, “
Fast and robust Earth mover’s distances
,” in
2009 IEEE 12th International Conference on Computer Vision
(
IEEE
,
2009
), pp.
460
467
.
59.
Y.
Rubner
,
C.
Tomasi
, and
L. J.
Guibas
, “
The Earth mover’s distance as a metric for image retrieval
,”
Int. J. Comput. Vision
40
,
99
121
(
2000
).
60.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of solutions. I
,”
J. Chem. Phys.
19
,
774
777
(
1951
).
61.
O.
Pele
and
M.
Werman
, “
A linear time histogram metric for improved SIFT matching
,” in
Computer Vision–ECCV 2008
, edited by
D.
Forsyth
,
P.
Torr
, and
A.
Zisserman
(
Springer
,
2008
), pp.
495
508
.
62.
H. A.
Lorentz
, “
Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase
,”
Ann. Phys.
248
,
127
136
(
1881
).
63.
S. J.
Marrink
and
A. E.
Mark
, “
The mechanism of vesicle fusion as revealed by molecular dynamics simulations
,”
J. Am. Chem. Soc.
125
,
11144
11145
(
2003
).
64.
A. F.
Smeijers
,
A. J.
Markvoort
,
K.
Pieterse
, and
P. A. J.
Hilbers
, “
A detailed look at vesicle fusion
,”
J. Phys. Chem. B
110
,
13212
13219
(
2006
).
65.
T. S.
Carpenter
 et al, “
Capturing phase behavior of ternary lipid mixtures with a refined Martini coarse-grained force field
,”
J. Chem. Theory Comput.
14
,
6050
6062
(
2018
).
66.
See https://github.com/GMPavanLab/SwarmCGM for the code and all materials necessary for running the software and for reproducibility testing.

Supplementary Material

You do not currently have access to this content.