Hydrophobic interactions drive numerous biological and synthetic processes. The materials used in these processes often possess chemically heterogeneous surfaces that are characterized by diverse chemical groups positioned in close proximity at the nanoscale; examples include functionalized nanomaterials and biomolecules, such as proteins and peptides. Nonadditive contributions to the hydrophobicity of such surfaces depend on the chemical identities and spatial patterns of polar and nonpolar groups in ways that remain poorly understood. Here, we develop a dual-loop active learning framework that combines a fast reduced-accuracy method (a convolutional neural network) with a slow higher-accuracy method (molecular dynamics simulations with enhanced sampling) to efficiently predict the hydration free energy, a thermodynamic descriptor of hydrophobicity, for nearly 200 000 chemically heterogeneous self-assembled monolayers (SAMs). Analysis of this dataset reveals that SAMs with distinct polar groups exhibit substantial variations in hydrophobicity as a function of their composition and patterning, but the clustering of nonpolar groups is a common signature of highly hydrophobic patterns. Further molecular dynamics analysis relates such clustering to the perturbation of interfacial water structure. These results provide new insight into the influence of chemical heterogeneity on hydrophobicity via quantitative analysis of a large set of surfaces, enabled by the active learning approach.

1.
R. A.
Friesner
,
R. B.
Murphy
,
M. P.
Repasky
,
L. L.
Frye
,
J. R.
Greenwood
,
T. A.
Halgren
,
P. C.
Sanschagrin
, and
D. T.
Mainz
, “
Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes
,”
J. Med. Chem.
49
(
21
),
6177
6196
(
2006
).
2.
A.
Nicholls
,
K. A.
Sharp
, and
B.
Honig
, “
Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons
,”
Proteins
11
(
4
),
281
296
(
1991
).
3.
P. W.
Snyder
,
J.
Mecinovic
,
D. T.
Moustakas
,
S. W.
Thomas
 III
,
M.
Harder
,
E. T.
Mack
,
M. R.
Lockett
,
A.
Heroux
,
W.
Sherman
, and
G. M.
Whitesides
, “
Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
44
),
17889
17894
(
2011
).
4.
K. A.
Dill
, “
Dominant forces in protein folding
,”
Biochemistry
29
(
31
),
7133
7155
(
1990
).
5.
C. M.
Dobson
, “
Protein folding and misfolding
,”
Nature
426
(
6968
),
884
890
(
2003
).
6.
R. C.
Van Lehn
and
A.
Alexander-Katz
, “
Ligand-mediated short-range attraction drives aggregation of charged monolayer-protected gold nanoparticles
,”
Langmuir
29
(
28
),
8788
8798
(
2013
).
7.
K.
Nakanishi
,
T.
Sakiyama
, and
K.
Imamura
, “
On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon
,”
J. Biosci. Bioeng.
91
(
3
),
233
244
(
2001
).
8.
R. C.
Van Lehn
,
P. U.
Atukorale
,
R. P.
Carney
,
Y.-S.
Yang
,
F.
Stellacci
,
D. J.
Irvine
, and
A.
Alexander-Katz
, “
Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers
,”
Nano Lett.
13
(
9
),
4060
4067
(
2013
).
9.
R. C.
Van Lehn
and
A.
Alexander-Katz
, “
Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations
,”
Soft Matter
11
(
16
),
3165
3175
(
2015
).
10.
D.
Chandler
, “
Interfaces and the driving force of hydrophobic assembly
,”
Nature
437
(
7059
),
640
647
(
2005
).
11.
C.
Wang
,
C.-K. D.
Ma
,
H.
Yeon
,
X.
Wang
,
S. H.
Gellman
, and
N. L.
Abbott
, “
Nonadditive interactions mediated by water at chemically heterogeneous surfaces: Nonionic polar groups and hydrophobic interactions
,”
J. Am. Chem. Soc.
139
(
51
),
18536
18544
(
2017
).
12.
E.
Xi
,
V.
Venkateshwaran
,
L.
Li
,
N.
Rego
,
A. J.
Patel
, and
S.
Garde
, “
Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
51
),
13345
13350
(
2017
).
13.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
14.
J. N.
Israelachvili
and
M. L.
Gee
, “
Contact angles on chemically heterogeneous surfaces
,”
Langmuir
5
(
1
),
288
289
(
1989
).
15.
J. A.
Reynolds
,
D. B.
Gilbert
, and
C.
Tanford
, “
Empirical correlation between hydrophobic free-energy and aqueous cavity surface-area
,”
Proc. Natl. Acad. Sci. U. S. A.
71
(
8
),
2925
2927
(
1974
).
16.
M. H.
Abraham
,
G. S.
Whiting
,
R.
Fuchs
, and
E. J.
Chambers
, “
Thermodynamics of solute transfer from water to hexadecane
,”
J. Chem. Soc., Perkin Trans. 2
1990
(
2
),
291
300
.
17.
B. C.
Stephenson
,
A.
Goldsipe
,
K. J.
Beers
, and
D.
Blankschtein
, “
Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution
,”
J. Phys. Chem. B
111
(
5
),
1025
1044
(
2007
).
18.
L.
Jiang
,
S.
Cao
,
P. P.
Cheung
,
X.
Zheng
,
C. W. T.
Leung
,
Q.
Peng
,
Z.
Shuai
,
B. Z.
Tang
,
S.
Yao
, and
X.
Huang
, “
Real-time monitoring of hydrophobic aggregation reveals a critical role of cooperativity in hydrophobic effect
,”
Nat. Commun.
8
,
15639
(
2017
).
19.
J.
Chen
and
C. L.
Brooks
 III
, “
Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions
,”
Phys. Chem. Chem. Phys.
10
(
4
),
471
481
(
2008
).
20.
J. L.
MacCallum
and
D. P.
Tieleman
, “
Hydrophobicity scales: A thermodynamic looking glass into lipid-protein interactions
,”
Trends Biochem. Sci.
36
(
12
),
653
662
(
2011
).
21.
D. F.
Moyano
,
K.
Saha
,
G.
Prakash
,
B.
Yan
,
H.
Kong
,
M.
Yazdani
, and
V. M.
Rotello
, “
Fabrication of corona-free nanoparticles with tunable hydrophobicity
,”
ACS Nano
8
(
7
),
6748
6755
(
2014
).
22.
X.
Li
,
S. M.
Robinson
,
A.
Gupta
,
K.
Saha
,
Z.
Jiang
,
D. F.
Moyano
,
A.
Sahar
,
M. A.
Riley
, and
V. M.
Rotello
, “
Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria
,”
ACS Nano
8
(
10
),
10682
10686
(
2014
).
23.
D. F.
Moyano
,
M.
Goldsmith
,
D. J.
Solfiell
,
D.
Landesman-Milo
,
O. R.
Miranda
,
D.
Peer
, and
V. M.
Rotello
, “
Nanoparticle hydrophobicity dictates immune response
,”
J. Am. Chem. Soc.
134
(
9
),
3965
3967
(
2012
).
24.
K.
Chen
,
S.
Rana
,
D. F.
Moyano
,
Y.
Xu
,
X.
Guo
, and
V. M.
Rotello
, “
Optimizing the selective recognition of protein isoforms through tuning of nanoparticle hydrophobicity
,”
Nanoscale
6
(
12
),
6492
6495
(
2014
).
25.
J. T.
Woodward
,
H.
Gwin
, and
D. K.
Schwartz
, “
Contact angles on surfaces with mesoscopic chemical heterogeneity
,”
Langmuir
16
(
6
),
2957
2961
(
2000
).
26.
C. D.
Ma
,
C.
Wang
,
C.
Acevedo-Vélez
,
S. H.
Gellman
, and
N. L.
Abbott
, “
Modulation of hydrophobic interactions by proximally immobilized ions
,”
Nature
517
(
7534
),
347
350
(
2015
).
27.
A. J.
Patel
,
P.
Varilly
, and
D.
Chandler
, “
Fluctuations of water near extended hydrophobic and hydrophilic surfaces
,”
J. Phys. Chem. B
114
(
4
),
1632
1637
(
2010
).
28.
A. J.
Patel
,
P.
Varilly
,
D.
Chandler
, and
S.
Garde
, “
Quantifying density fluctuations in volumes of all shapes and sizes using indirect umbrella sampling
,”
J. Stat. Phys.
145
(
2
),
265
275
(
2011
).
29.
A. J.
Patel
,
P.
Varilly
,
S. N.
Jamadagni
,
M. F.
Hagan
,
D.
Chandler
, and
S.
Garde
, “
Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function
,”
J. Phys. Chem. B
116
(
8
),
2498
2503
(
2012
).
30.
J.
Wang
,
D.
Bratko
, and
A.
Luzar
, “
Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
16
),
6374
6379
(
2011
).
31.
B. C.
Dallin
,
H.
Yeon
,
A. R.
Ostwalt
,
N. L.
Abbott
, and
R. C.
Van Lehn
, “
Molecular order affects interfacial water structure and temperature-dependent hydrophobic interactions between nonpolar self-assembled monolayers
,”
Langmuir
35
(
6
),
2078
2088
(
2019
).
32.
A. S.
Kelkar
,
B. C.
Dallin
, and
R. C.
Van Lehn
, “
Predicting hydrophobicity by learning spatiotemporal features of interfacial water structure: Combining molecular dynamics simulations with convolutional neural networks
,”
J. Phys. Chem. B
124
(
41
),
9103
9114
(
2020
).
33.
B. C.
Dallin
and
R. C.
Van Lehn
, “
Spatially heterogeneous water properties at disordered surfaces decrease the hydrophobicity of nonpolar self-assembled monolayers
,”
J. Phys. Chem. Lett.
10
(
14
),
3991
3997
(
2019
).
34.
J. I.
Monroe
and
M. S.
Shell
, “
Computational discovery of chemically patterned surfaces that effect unique hydration water dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
32
),
8093
8098
(
2018
).
35.
Z.
Luo
,
A.
Murello
,
D. M.
Wilkins
,
F.
Kovacik
,
J.
Kohlbrecher
,
A.
Radulescu
,
H. I.
Okur
,
Q. K.
Ong
,
S.
Roke
,
M.
Ceriotti
, and
F.
Stellacci
, “
Determination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
51
),
25516
25523
(
2019
).
36.
M.
Kanduc
,
A.
Schlaich
,
E.
Schneck
, and
R. R.
Netz
, “
Water-mediated interactions between hydrophilic and hydrophobic surfaces
,”
Langmuir
32
(
35
),
8767
8782
(
2016
).
37.
N.
Giovambattista
,
P. G.
Debenedetti
, and
P. J.
Rossky
, “
Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity
,”
J. Phys. Chem. C
111
(
3
),
1323
1332
(
2007
).
38.
B.
Settles
, “
Active learning literature survey
,” Computer Sciences Technical Report, University of Wisconsin-Madison (
2009
).
39.
K.
Shmilovich
,
R. A.
Mansbach
,
H.
Sidky
,
O. E.
Dunne
,
S. S.
Panda
,
J. D.
Tovar
, and
A. L.
Ferguson
, “
Discovery of self-assembling pi-conjugated peptides by active learning-directed coarse-grained molecular simulation
,”
J. Phys. Chem. B
124
(
19
),
3873
3891
(
2020
).
40.
A. G.
Kusne
,
H.
Yu
,
C.
Wu
,
H.
Zhang
,
J.
Hattrick-Simpers
,
B.
DeCost
,
S.
Sarker
,
C.
Oses
,
C.
Toher
,
S.
Curtarolo
,
A. V.
Davydov
,
R.
Agarwal
,
L. A.
Bendersky
,
M.
Li
,
A.
Mehta
, and
I.
Takeuchi
, “
On-the-fly closed-loop materials discovery via Bayesian active learning
,”
Nat. Commun.
11
(
1
),
5966
(
2020
).
41.
K. M.
Jablonka
,
G. M.
Jothiappan
,
S.
Wang
,
B.
Smit
, and
B.
Yoo
, “
Bias free multiobjective active learning for materials design and discovery
,”
Nat. Commun.
12
(
1
),
2312
(
2021
).
42.
J. C.
Love
,
L. A.
Estroff
,
J. K.
Kriebel
,
R. G.
Nuzzo
, and
G. M.
Whitesides
, “
Self-assembled monolayers of thiolates on metals as a form of nanotechnology
,”
Chem. Rev.
105
(
4
),
1103
1169
(
2005
).
43.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A. D.
Mackerell
, Jr.
, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
,”
J. Comput. Chem.
31
(
4
),
671
690
(
2010
).
44.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
(
23
),
234505
(
2005
).
45.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle Mesh Ewald method
,”
J. Chem. Phys.
103
(
19
),
8577
8593
(
1995
).
46.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
(
16
),
1701
1718
(
2005
).
47.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
(
1
),
014101
(
2007
).
48.
B. C.
Dallin
,
A. S.
Kelkar
, and
R. C.
Van Lehn
, “
Generalizable features of interfacial water structure predict the hydrophobicity of chemically heterogeneous surfaces
,”
ChemRxiv
(
2021
).
49.
R.
Godawat
,
S. N.
Jamadagni
, and
S.
Garde
, “
Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
36
),
15119
15124
(
2009
).
50.
A. K.
Chew
,
B. C.
Dallin
, and
R. C.
Van Lehn
, “
The interplay of ligand properties and core size dictates the hydrophobicity of monolayer-protected gold nanoparticles
,”
ACS Nano
15
(
3
),
4534
4545
(
2021
).
51.
A. P.
Willard
and
D.
Chandler
, “
Instantaneous liquid interfaces
,”
J. Phys. Chem. B
114
(
5
),
1954
1958
(
2010
).
52.
M.
Bloodgood
and
K.
Vijay-Shanker
, “
A method for stopping active learning based on stabilizing predictions and the need for user-adjustable stopping
,” Proceedings of the Thirteenth Conference on Computational Natural Language Learning (2009), arXiv:1409.5165.
53.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1-2
,
19
25
(
2015
).
54.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
(
2
),
604
613
(
2014
).
55.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
(
8
),
1011
1021
(
1992
).
56.
C. K.
Williams
and
C. E.
Rasmussen
,
Gaussian Processes for Regression
(MIT Press,
2006
).
57.
E.
Brochu
,
V. M.
Cora
, and
N.
De Freitas
, “
A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
,” arXiv:1012.2599 (
2010
).
58.
D. J.
Lizotte
, “
Practical Bayesian optimization
,” Ph.D. thesis,
University of Alberta
,
2008
.
59.
R.
Capelli
,
A.
Gardin
,
C.
Empereur-Mot
,
G.
Doni
, and
G. M.
Pavan
, “
A data-driven dimensionality reduction approach to compare and classify lipid force fields
,”
J. Phys. Chem. B
125
(
28
),
7785
7796
(
2021
).
60.
A.
Ozkanlar
and
A. E.
Clark
, “
ChemNetworks: A complex network analysis tool for chemical systems
,”
J. Comput. Chem.
35
(
6
),
495
505
(
2014
).
61.
K.-I.
Oh
,
X.
You
,
J. C.
Flanagan
, and
C. R.
Baiz
, “
Liquid–liquid phase separation produces fast H-bond dynamics in DMSO–water mixtures
,”
J. Phys. Chem. Lett.
11
(
5
),
1903
1908
(
2020
).
62.
H.
Yeon
,
C.
Wang
,
R. C.
Van Lehn
, and
N. L.
Abbott
, “
Influence of order within nonpolar monolayers on hydrophobic interactions
,”
Langmuir
33
(
19
),
4628
4637
(
2017
).
63.

See https://gitlab.com/atharva-kelkar/dual-loop-active-learning for all data and code to reproduce this work.

Supplementary Material

You do not currently have access to this content.