Chemical thermodynamic models of solvent and solute activities predict the equilibrium behavior of aqueous solutions. However, these models are semi-empirical. They represent micro-scale ion and solvent behaviors controlling the macroscopic properties using small numbers of parameters whose values are obtained by fitting to activities and other partial derivatives of the Gibbs energy measured for the bulk solutions. We have conducted atomistic simulations of aqueous electrolyte solutions (MgCl2 and CaCl2) to determine the parameters of thermodynamic hydration models. We have implemented a cooperative hydration model to categorize the water molecules in electrolyte solutions into different subpopulations. The value of the electrolyte-specific parameter, k, was determined from the ion-affected subpopulation with the lowest absolute value of the free energy of removing the water molecule. The other equilibrium constant parameter, K1, associated with the first degree of hydration, was computed from the free energy of hydration of hydrated clusters. The hydration number, h, was determined from a reorientation dynamic analysis of the water subpopulations compared to bulk-like behavior. The reparameterized models [R. H. Stokes and R. H. Robinson, J. Solution Chem. 2, 173 (1973) and Balomenos et al., Fluid Phase Equilib. 243, 29 (2006)] using the computed values of the parameters lead to the osmotic coefficients of MgCl2 solutions that are consistent with measurements. Such an approach removes the dependence on the availability of experimental data and could lead to aqueous thermodynamic models capable of estimating the values of solute and solvent activities as well as thermal and volumetric properties for a wide range of compositions and concentrations.

1.
R. A.
Robinson
and
R. H.
Stokes
,
J. Am. Chem. Soc.
70
,
1870
(
1948
).
2.
K. S.
Pitzer
,
J. Chem. Phys.
77
,
268
(
1973
).
3.
S. L.
Clegg
and
K. S.
Pitzer
,
J. Chem. Phys.
96
,
3513
(
1992
).
4.
S. L.
Clegg
and
A. S.
Wexler
,
J. Geophys. Res.: Atmos.
107
(
D14
),
4207
, (
2002
).
5.
Y.
Song
and
C. C.
Chen
,
Ind. Eng. Chem. Res.
44
,
8909
(
2005
).
6.
C. C.
Chen
and
Y.
Song
,
Ind. Eng. Chem. Res.
48
,
5522
(
2009
).
7.
E.
Balomenos
,
D.
Panias
, and
I.
Paspaliaris
,
Miner. Process. Extr.
27
,
1
(
2006
).
8.
J.
Mähler
and
I.
Persson
,
Inorg. Chem.
51
,
425
(
2012
).
9.
Z.
Gong
and
H.
Sun
,
J. Chem. Inf. Model.
57
,
1599
(
2017
).
10.
A. A.
Zavitsas
,
J. Phys. Chem. B
105
(
32
),
7805
(
2001
).
11.
L. X.
Dang
and
T.-M.
Chang
,
J. Phys. Chem. Lett.
3
,
175
(
2012
).
12.
S.
Uhlmann
,
T.
Frauenheim
, and
Y.
Lifshitz
,
Phys. Rev. Lett.
81
,
641
(
1998
).
13.
T. C.
Berkelbach
,
H.-S.
Lee
, and
M. E.
Tuckerman
,
Phys. Rev. Lett.
103
,
238302
(
2009
).
14.
M.
Pavlov
,
P. E. M.
Siegbahn
, and
M.
Sandström
,
J. Phys. Chem. A
102
,
219
(
1998
).
15.
J. C.
Rasaiah
and
H. L.
Friedman
,
J. Chem. Phys.
48
,
2742
(
1968
).
16.
I.
Kalcher
and
J.
Dzubiella
,
J. Chem. Phys.
130
,
134507
(
2009
).
17.
N.
Naleem
,
N.
Bentenitis
, and
P. E.
Smith
,
J. Chem. Phys.
148
,
222828
(
2018
).
18.
R. H.
Stokes
and
R. A.
Robinson
,
J. Solution Chem.
2
,
173
(
1973
).
19.
E.
Balomenos
,
D.
Panias
, and
I.
Paspaliaris
,
Fluid Phase Equilib.
243
,
29
(
2006
).
20.
H.
Schönert
,
Z. Phys. Chem. Neue Folge
150
,
163
(
1986
).
21.
H.
Schönert
,
Z. Phys. Chem. Neue Folge
150
,
181
(
1986
).
22.
R. H.
Stokes
and
R. A.
Robinson
,
Electrolyte Solutions
(
Butterworth & Co.
,
London
,
1970
).
23.
K. S.
Pitzer
,
Acc. Chem. Res.
10
,
371
(
1977
).
24.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
25.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
26.
E.
Duboué-Dijon
,
P.
Delcroix
,
H.
Martinez-Seara
,
J.
Hladílková
,
P.
Coufal
,
T.
Křížek
, and
P.
Jungwirth
,
J. Phys. Chem. B
122
,
5640
(
2018
).
27.
D.
Laage
and
G.
Stirnemann
,
J. Phys. Chem. B
123
,
3312
(
2019
).
28.
I.
Leontyev
and
A.
Stuchebrukhov
,
Phys. Chem. Chem. Phys.
13
,
2613
(
2011
).
29.
T.
Martinek
,
E.
Duboué-Dijon
,
Š.
Timr
,
P. E.
Mason
,
K.
Baxová
,
H. E.
Fischer
,
B.
Schmidt
,
E.
Pluhařová
, and
P.
Jungwirth
,
J. Chem. Phys.
148
,
222813
(
2018
).
30.
P. E.
Mason
,
E.
Duboué-Dijon
,
H. E.
Fischer
, and
P.
Jungwirth
,
J. Phys. Chem. B
122
,
3296
(
2018
).
31.
X.
Zhang
,
P.
Alvarez-Lloret
,
G.
Chass
, and
D.
Di Tommaso
,
Eur. J. Mineral.
31
,
275
(
2019
).
32.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
33.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
34.
G.
Stirnemann
,
E.
Wernersson
,
P.
Jungwirth
, and
D.
Laage
,
J. Am. Chem. Soc.
135
,
11824
(
2013
).
35.
M.
Bonomi
,
D.
Branduardi
,
G.
Bussi
,
C.
Camilloni
,
D.
Provasi
,
P.
Raiteri
,
D.
Donadio
,
F.
Marinelli
,
F.
Pietrucci
,
R. A.
Broglia
, and
M.
Parrinello
,
Comput. Phys. Commun.
180
,
1961
(
2009
).
36.
The PLUMED consortium
,
Nat. Methods
16
,
670
(
2019
).
37.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
 et al, Gaussian,
Wallingford, CT
,
2009
.
38.
M. J.
Frisch
,
G. B.
Trucks
, and
H. B.
Schlegel
, Gaussian 09, Revision E.01,
Gaussian, Inc.
,
Wallingford, CT
,
2013
.
39.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
40.
M. D.
Liptak
and
G. C.
Shields
,
J. Am. Chem. Soc.
123
,
7314
(
2001
).
41.
J.
Ho
,
A.
Klamt
, and
M. L.
Coote
,
J. Phys. Chem. A
114
,
13442
(
2010
).
42.
D.
Di Tommaso
and
K. L.
Watson
,
J. Phys. Chem. A
118
,
11098
(
2014
).
43.
R. F.
Ribeiro
,
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
13
,
10908
(
2011
).
44.
E.
Tang
,
D.
Di Tommaso
, and
N. H.
de Leeuw
,
Phys. Chem. Chem. Phys.
12
,
13804
(
2010
).
45.
D.
Toroz
,
F.
Song
,
G. A.
Chass
, and
D.
Di Tommaso
,
CrystEngComm
23
,
4881
(
2021
).
46.
Y.
Marcus
,
J. Phys. Chem. B
118
,
10471
(
2014
).
47.
C. K. D.
Jiao
,
A.
Grossfield
,
T. A.
Darden
, and
P.
Ren
,
J. Phys. Chem. B
110
,
18553
(
2006
).
48.
S.
Kim
,
X.
Wang
,
J.
Jang
,
K.
Eom
,
S. L.
Clegg
,
G. S.
Park
, and
D.
Di Tommaso
,
ChemPhysChem
21
,
2334
(
2020
).
49.
D.
Laage
and
J. T.
Hynes
,
Chem. Phys. Lett.
433
,
80
(
2006
).
50.
D.
Laage
and
J. T.
Hynes
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
11167
(
2007
).
51.
The NAG Library, The Numerical Algorithms Group (NAG), Oxford, United Kingdom www.nag.com.

Supplementary Material

You do not currently have access to this content.