We demonstrate how to apply the tensor-train format to solve the time-independent Schrödinger equation for quasi-one-dimensional excitonic chain systems with and without periodic boundary conditions. The coupled excitons and phonons are modeled by Fröhlich–Holstein type Hamiltonians with on-site and nearest-neighbor interactions only. We reduce the memory consumption as well as the computational costs significantly by employing efficient decompositions to construct low-rank tensor-train representations, thus mitigating the curse of dimensionality. In order to compute also higher quantum states, we introduce an approach that directly incorporates the Wielandt deflation technique into the alternating linear scheme for the solution of eigenproblems. Besides systems with coupled excitons and phonons, we also investigate uncoupled problems for which (semi-)analytical results exist. There, we find that in the case of homogeneous systems, the tensor-train ranks of state vectors only marginally depend on the chain length, which results in a linear growth of the storage consumption. However, the central processing unit time increases slightly faster with the chain length than the storage consumption because the alternating linear scheme adopted in our work requires more iterations to achieve convergence for longer chains and a given rank. Finally, we demonstrate that the tensor-train approach to the quantum treatment of coupled excitons and phonons makes it possible to directly tackle the phenomenon of mutual self-trapping. We are able to confirm the main results of the Davydov theory, i.e., the dependence of the wave packet width and the corresponding stabilization energy on the exciton–phonon coupling strength, although only for a certain range of that parameter. In future work, our approach will allow calculations also beyond the validity regime of that theory and/or beyond the restrictions of the Fröhlich–Holstein type Hamiltonians.

1.
2.
O. V.
Mikhnenko
,
P. W. M.
Blom
, and
T.-Q.
Nguyen
,
Energy Environ. Sci.
8
,
1867
(
2015
).
3.
G. J.
Hedley
,
A.
Ruseckas
, and
I. D. W.
Samuel
,
Chem. Rev.
117
,
796
(
2017
).
4.
A.
Zhugayevych
and
S.
Tretiak
,
Annu. Rev. Phys. Chem.
66
,
305
(
2015
).
5.
J. J.
Kranz
and
M.
Elstner
,
J. Chem. Theory Comput.
12
,
4209
(
2016
).
6.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
,
Chem. Rev.
120
,
2215
(
2020
).
7.
J. T.
Devreese
and
A. S.
Alexandrov
,
Rep. Prog. Phys.
72
,
066501
(
2009
).
8.
M.
Schröter
,
S. D.
Ivanov
,
J.
Schulze
,
S. P.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
,
Phys. Rep.
567
,
1
(
2015
).
10.
D. D.
Georgiev
and
J. F.
Glazebrook
,
Physica A
517
,
257
(
2019
).
11.
Conical Intersections. Electronic Structure, Dynamics and Spectroscopy
, Advanced Series in Physical Chemistry Vol. 15, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
).
12.
N.
Säkkinen
,
Y.
Peng
,
H.
Appel
, and
R.
Van Leeuwen
,
J. Chem. Phys.
143
,
234101
(
2015
).
13.
W. T.
Simpson
and
D. L.
Peterson
,
J. Chem. Phys.
26
,
588
(
1957
).
14.
G. D.
Scholes
and
G.
Rumbles
,
Mater. Sustainable Energy
5
,
12
(
2010
).
15.
R.
Binder
,
D.
Lauvergnat
, and
I.
Burghardt
,
Phys. Rev. Lett.
120
,
227401
(
2018
).
16.
B.
Gerlach
and
H.
Löwen
,
Rev. Mod. Phys.
63
,
63
(
1991
).
17.
A.
Mishchenko
,
N.
Prokof’ev
,
A.
Sakamoto
, and
B.
Svistunov
,
Phys. Rev. B
62
,
6317
(
2000
).
18.
J. T.
Titantah
,
C.
Pierleoni
, and
S.
Ciuchi
,
Phys. Rev. Lett.
87
,
206406
(
2001
).
19.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
20.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
21.
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
, edited by
H. D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2009
).
22.
F.
Di Maiolo
,
D.
Brey
,
R.
Binder
, and
I.
Burghardt
,
J. Chem. Phys.
153
,
184107
(
2020
).
23.
24.
V.
Kazeev
,
M.
Khammash
,
M.
Nip
, and
C.
Schwab
,
PLoS Comput. Biol.
10
,
e1003359
(
2014
).
25.
P.
Gelß
,
S.
Matera
, and
C.
Schütte
,
J. Comput. Phys.
314
,
489
(
2016
).
26.
P.
Gelß
,
S.
Klus
,
J.
Eisert
, and
C.
Schütte
,
J. Comput. Nonlinear Dyn.
14
,
061006
(
2019
).
27.
S.
Klus
and
P.
Gelß
,
Algorithms
12
,
240
(
2019
).
28.
F. L.
Hitchcock
,
J. Math. Phys.
6
,
164
(
1927
).
29.
L. R.
Tucker
, in
Contributions to Mathematical Psychology
, edited by
H.
Gulliksen
and
N.
Frederiksen
(
Holt Rinehart & Winston
,
1964
), pp.
110
127
.
30.
I. V.
Oseledets
,
Dokl. Math.
80
,
495
(
2009
).
31.
R.
Borrelli
and
M. F.
Gelin
,
J. Chem. Phys.
145
,
224101
(
2016
).
32.
R.
Borrelli
and
M. F.
Gelin
,
Sci. Rep.
7
,
9127
(
2017
).
33.
S. M.
Greene
and
V. S.
Batista
,
J. Chem. Theory Comput.
13
,
4034
(
2017
).
34.
R.
Borrelli
,
J. Chem. Phys.
150
,
234102
(
2019
).
36.
S.
Holtz
,
T.
Rohwedder
, and
R.
Schneider
,
Numer. Math.
120
,
701
(
2012
).
37.
P.
Gelß
,
S.
Klus
,
S.
Matera
, and
C.
Schütte
,
J. Comput. Phys.
341
,
140
(
2017
).
38.
S.
Holtz
,
T.
Rohwedder
, and
R.
Schneider
,
SIAM J. Sci. Comput.
34
,
A683
(
2012
).
39.
S. V.
Dolgov
,
B. N.
Khoromskij
,
I. V.
Oseledets
, and
D. V.
Savostyanov
,
Comput. Phys. Commun.
185
,
1207
(
2014
).
40.
M.
Rakhuba
,
A.
Novikov
, and
I.
Oseledets
,
J. Comput. Phys.
396
,
718
(
2019
).
41.
Y.
Saad
,
Numerical Methods for Large Eigenvalue Problems
(
Society for Industrial and Applied Mathematics
,
2011
).
42.
N. J.
Hestand
and
F. C.
Spano
,
Acc. Chem. Res.
50
,
341
(
2017
).
44.
I. V.
Oseledets
and
E. E.
Tyrtyshnikov
,
SIAM J. Sci. Comput.
31
,
3744
(
2009
).
45.
I. V.
Oseledets
,
SIAM J. Sci. Comput.
33
,
2295
(
2011
).
46.
V.
Kazeev
,
O.
Reichmann
, and
C.
Schwab
,
Linear Algebra Appl.
438
,
4204
(
2013
).
47.
S.
Klus
and
C.
Schütte
,
J. Comput. Dyn.
3
,
139
(
2016
).
48.
M.
Nip
,
J. P.
Hespanha
, and
M.
Khammash
, in
52nd IEEE Conference on Decision and Control
(
IEEE
,
2013
), pp.
1950
1957
.
49.
P.
Benner
,
S.
Dolgov
,
V.
Khoromskaia
, and
B. N.
Khoromskij
,
J. Comput. Phys.
334
,
221
(
2017
).
50.
P.
Gelß
,
S.
Klus
,
M.
Scherer
,
F.
Nüske
, and
M.
Lücke
, Scikit-TT, https://github.com/PGelss/scikit_tt,
2021
.
51.
B.
Schmidt
and
U.
Lorenz
,
Comput. Phys. Commun.
213
,
223
(
2017
).
52.
B.
Schmidt
and
C.
Hartmann
,
Comput. Phys. Commun.
228
,
229
(
2018
).
53.
B.
Schmidt
,
R.
Klein
, and
L.
Cancissu Araujo
,
J. Comput. Chem.
40
,
2677
(
2019
).
54.
Z.
Hu
,
G. S.
Engel
, and
S.
Kais
,
J. Chem. Phys.
148
,
204307
(
2018
).
55.
J.
Bonca
,
S. A.
Trugman
, and
I.
Batistic
,
Phys. Rev. B
60
,
1633
(
1999
).
56.
A. S.
Davydov
,
Solitons in Molecular Systems
(
Reidel
,
1985
).
57.
W. C.
Kerr
and
P. S.
Lomdahl
,
Phys. Rev. B
35
,
3629
(
1987
).
58.
B. N.
Khoromskij
,
Constr. Approximation
34
,
257
(
2011
).
59.
N.
Laskin
, in
Dynamical Systems and Methods
, edited by
A.
Luo
,
J.
Machado
, and
D.
Baleanu
(
Springer
,
New York
,
2012
), pp.
311
322
.
60.
F.
Giustino
,
Rev. Mod. Phys.
89
,
015003
(
2017
).
61.
H.-Y.
Chen
,
D.
Sangalli
, and
M.
Bernardi
,
Phys. Rev. Lett.
125
,
107401
(
2020
).
You do not currently have access to this content.