Surface hopping has seen great success in describing molecular phenomena where electronic excitations tend to be localized, but its application to materials with band-like electronic properties has remained limited. Here, we derive a formulation of fewest-switches surface hopping where both the quantum and classical equations of motion are solved entirely in terms of reciprocal-space coordinates. The resulting method is directly compatible with band structure calculations and allows for the efficient description of band-like phenomena by means of a truncation of the Brillouin zone. Using the Holstein and Peierls models as examples, we demonstrate the formal equivalence between real-space and reciprocal-space surface hopping and assess their accuracy against mean-field mixed quantum–classical dynamics and numerically exact results. Having very similar equations of motion, reciprocal-space surface hopping can be straightforwardly incorporated in existing (real-space) surface hopping implementations.

1.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
,
J. Am. Chem. Soc.
131
,
6050
(
2009
).
2.
X.-Y.
Zhu
and
V.
Podzorov
,
J. Phys. Chem. Lett.
6
,
4758
(
2015
).
3.
A. D.
Wright
,
C.
Verdi
,
R. L.
Milot
,
G. E.
Eperon
,
M. A.
Pérez-Osorio
,
H. J.
Snaith
,
F.
Giustino
,
M. B.
Johnston
, and
L. M.
Herz
,
Nat. Commun.
7
,
11755
(
2016
).
4.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
5.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
(
2010
).
6.
S.
Shree
,
M.
Semina
,
C.
Robert
,
B.
Han
,
T.
Amand
,
A.
Balocchi
,
M.
Manca
,
E.
Courtade
,
X.
Marie
,
T.
Taniguchi
,
K.
Watanabe
,
M. M.
Glazov
, and
B.
Urbaszek
,
Phys. Rev. B
98
,
035302
(
2018
).
7.
C.
Trovatello
,
H. P. C.
Miranda
,
A.
Molina-Sánchez
,
R.
Borrego-Varillas
,
C.
Manzoni
,
L.
Moretti
,
L.
Ganzer
,
M.
Maiuri
,
J.
Wang
,
D.
Dumcenco
,
A.
Kis
,
L.
Wirtz
,
A.
Marini
,
G.
Soavi
,
A. C.
Ferrari
,
G.
Cerullo
,
D.
Sangalli
, and
S. D.
Conte
,
ACS Nano
14
,
5700
(
2020
).
8.
D.
Li
,
C.
Trovatello
,
S.
Dal Conte
,
M.
Nuß
,
G.
Soavi
,
G.
Wang
,
A. C.
Ferrari
,
G.
Cerullo
, and
T.
Brixner
,
Nat. Commun.
12
,
954
(
2021
).
9.
Z.
Huang
,
L.
Wang
,
C.
Wu
,
L.
Chen
,
F.
Grossmann
, and
Y.
Zhao
,
Phys. Chem. Chem. Phys.
19
,
1655
(
2017
).
10.
F.
Lengers
,
T.
Kuhn
, and
D. E.
Reiter
,
Phys. Rev. B
101
,
155304
(
2020
).
11.
S.
Brem
,
A.
Ekman
,
D.
Christiansen
,
F.
Katsch
,
M.
Selig
,
C.
Robert
,
X.
Marie
,
B.
Urbaszek
,
A.
Knorr
, and
E.
Malic
,
Nano Lett.
20
,
2849
(
2020
).
12.
A.
Krotz
,
J.
Provazza
, and
R.
Tempelaar
,
J. Chem. Phys.
154
,
224101
(
2021
).
13.
J. E.
Subotnik
,
A.
Jain
,
B.
Landry
,
A.
Petit
,
W.
Ouyang
, and
N.
Bellonzi
,
Annu. Rev. Phys. Chem.
67
,
387
(
2016
).
14.
R.
Crespo-Otero
and
M.
Barbatti
,
Chem. Rev.
118
,
7026
(
2018
).
15.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
,
Chem. Rev.
120
,
2215
(
2020
).
16.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
17.
J. C.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
18.
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Phys.
122
,
094102
(
2005
).
19.
S.
Hammes-Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
20.
L.
Wang
,
A.
Akimov
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
7
,
2100
(
2016
).
21.
R.
Tempelaar
,
C. P.
van der Vegte
,
J.
Knoester
, and
T. L. C.
Jansen
,
J. Chem. Phys.
138
,
164106
(
2013
).
22.
B. R.
Landry
,
M. J.
Falk
, and
J. E.
Subotnik
,
J. Chem. Phys.
139
,
211101
(
2013
).
23.
H.-T.
Chen
and
D. R.
Reichman
,
J. Chem. Phys.
144
,
094104
(
2016
).
24.
Y.
Wu
and
J. E.
Subotnik
,
J. Chem. Phys.
154
,
234101
(
2021
).
25.
G.
Miao
,
N.
Bellonzi
, and
J.
Subotnik
,
J. Chem. Phys.
150
,
124101
(
2019
).
26.
X.
Bian
,
Y.
Wu
,
H.-H.
Teh
,
Z.
Zhou
,
H.-T.
Chen
, and
J. E.
Subotnik
,
J. Chem. Phys.
154
,
110901
(
2021
).
27.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
,
Phys. Rev. Lett.
42
,
1698
(
1979
).
28.
A.
Troisi
and
G.
Orlandi
,
Phys. Rev. Lett.
96
,
086601
(
2006
).
29.
Y.
Zhao
,
D. W.
Brown
, and
K.
Lindenberg
,
J. Chem. Phys.
100
,
2335
(
1994
).
30.
D.
Chen
,
J.
Ye
,
H.
Zhang
, and
Y.
Zhao
,
J. Phys. Chem. B
115
,
5312
(
2011
).
31.
R.
Silbey
and
R. W.
Munn
,
J. Chem. Phys.
72
,
2763
(
1980
).
32.
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Theory Comput.
2
,
229
(
2006
).
33.
C. P.
van der Vegte
,
A. G.
Dijkstra
,
J.
Knoester
, and
T. L. C.
Jansen
,
J. Phys. Chem. A
117
,
5970
(
2013
).
34.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
35.
H.
Liu
,
L.
Zhu
,
S.
Bai
, and
Q.
Shi
,
J. Chem. Phys.
140
,
134106
(
2014
).
36.
L.
Chen
,
Y.
Zhao
, and
Y.
Tanimura
,
J. Phys. Chem. Lett.
6
,
3110
(
2015
).
37.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
,
J. Chem. Phys.
150
,
184109
(
2019
).
38.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Theory Comput.
8
,
2808
(
2012
).
39.
Y.
Yan
,
T.
Xing
, and
Q.
Shi
,
J. Chem. Phys.
153
,
204109
(
2020
).
40.
D. Y.
Qiu
,
F. H.
da Jornada
, and
S. G.
Louie
,
Phys. Rev. B
93
,
235435
(
2016
).
41.
R.
Tempelaar
and
T. C.
Berkelbach
,
Nat. Commun.
10
,
3419
(
2019
).
42.
L.
Wang
and
D.
Beljonne
,
J. Phys. Chem. Lett.
4
,
1888
(
2013
).
43.
L.
Wang
and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
5
,
713
(
2014
).
44.
L.
Wang
,
O. V.
Prezhdo
, and
D.
Beljonne
,
Phys. Chem. Chem. Phys.
17
,
12395
(
2015
).
45.
J.
Qiu
,
X.
Bai
, and
L.
Wang
,
J. Phys. Chem. Lett.
9
,
4319
(
2018
).
46.
Z.
Sun
,
S.
Li
,
S.
Xie
, and
Z.
An
,
J. Phys. Chem. C
123
,
21336
(
2019
).
47.
Z.
Sun
,
S.
Li
,
S.
Xie
, and
Z.
An
,
J. Phys. Chem. C
124
,
18894
(
2020
).
48.
S.
Prodhan
,
J.
Qiu
,
M.
Ricci
,
O. M.
Roscioni
,
L.
Wang
, and
D.
Beljonne
,
J. Phys. Chem. Lett.
11
,
6519
(
2020
).
49.
Z.
Sun
,
S.
Li
,
S.
Xie
, and
Z.
An
,
Synth. Met.
279
,
116841
(
2021
).
50.
J.
Huang
,
Y.
Mo
, and
Y.
Yao
,
Phys. Rev. Appl.
15
,
014021
(
2021
).
51.
R.
Tempelaar
and
D. R.
Reichman
,
J. Chem. Phys.
148
,
102309
(
2018
).
52.
L.
Wang
,
A. E.
Sifain
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
6
,
3827
(
2015
).
53.
P.
Shushkov
,
R.
Li
, and
J. C.
Tully
,
J. Chem. Phys.
137
,
22A549
(
2012
).
54.
F. A.
Shakib
and
P.
Huo
,
J. Phys. Chem. Lett.
8
,
3073
(
2017
).
55.
J.
Lu
and
Z.
Zhou
,
J. Chem. Phys.
146
,
154110
(
2017
).

Supplementary Material

You do not currently have access to this content.