Non-polarizable empirical potentials have been proven to be incapable of capturing the mixing of methane–water mixtures at elevated pressures. Although density functional theory-based ab initio simulations may circumvent this discrepancy, they are limited in terms of the relevant time and length scales associated with mixing phenomena. Here, we show that the many-body MB-nrg potential, designed to reproduce methane–water interactions with coupled cluster accuracy, successfully captures this phenomenon up to 3 GPa and 500 K with varying methane concentrations. Two-phase simulations and long time scales that are required to fully capture the mixing, affordable due to the speed and accuracy of the MBX software, are assessed. Constructing the methane–water equation of state across the phase diagram shows that the stable mixtures are denser than the sum of their parts at a given pressure and temperature. We find that many-body polarization plays a central role, enhancing the induced dipole moments of methane by 0.20 D during mixing under pressure. Overall, the mixed system adopts a denser state, which involves a significant enthalpic driving force as elucidated by a systematic many-body energy decomposition analysis.

1.
A. Y.
Ben-Naim
,
Hydrophobic Interactions
(
Springer Science & Business Media
,
2012
).
2.
D.
Chandler
, “
Interfaces and the driving force of hydrophobic assembly
,”
Nature
437
,
640
(
2005
).
3.
E. E.
Meyer
,
K. J.
Rosenberg
, and
J.
Israelachvili
, “
Recent progress in understanding hydrophobic interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
15739
15746
(
2006
).
4.
L. X.
Dang
, “
Potential of mean force for the methane–methane pair in water
,”
J. Chem. Phys.
100
,
9032
9034
(
1994
).
5.
W. S.
Young
and
C. L.
Brooks
 III
, “
A reexamination of the hydrophobic effect: Exploring the role of the solvent model in computing the methane–methane potential of mean force
,”
J. Chem. Phys.
106
,
9265
9269
(
1997
).
6.
D.
Van Belle
and
S. J.
Wodak
, “
Molecular dynamics study of methane hydration and methane association in a polarizable water phase
,”
J. Am. Chem. Soc.
115
,
647
652
(
1993
).
7.
D. E.
Smith
,
L.
Zhang
, and
A. D. J.
Haymet
, “
Entropy of association of methane in water: A new molecular dynamics computer simulation
,”
J. Am. Chem. Soc.
114
,
5875
5876
(
1992
).
8.
J.-L.
Li
,
R.
Car
,
C.
Tang
, and
N. S.
Wingreen
, “
Hydrophobic interaction and hydrogen-bond network for a methane pair in liquid water
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
2626
2630
(
2007
).
9.
O.
Akin-Ojo
and
K.
Szalewicz
, “
Does a pair of methane molecules aggregate in water?
,”
J. Chem. Phys.
150
,
084501
(
2019
).
10.
G.
Hummer
,
S.
Garde
,
A. E.
García
,
A.
Pohorille
, and
L. R.
Pratt
, “
An information theory model of hydrophobic interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
93
,
8951
8955
(
1996
).
11.
G.
Hummer
,
S.
Garde
,
A. E.
García
,
M. E.
Paulaitis
, and
L. R.
Pratt
, “
The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
95
,
1552
1555
(
1998
).
12.
M. I.
Chaudhari
,
S. A.
Holleran
,
H. S.
Ashbaugh
, and
L. R.
Pratt
, “
Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
20557
20562
(
2013
).
13.
D.
Asthagiri
,
S.
Merchant
, and
L. R.
Pratt
, “
Role of attractive methane-water interactions in the potential of mean force between methane molecules in water
,”
J. Chem. Phys.
128
,
244512
(
2008
).
14.
C. G.
Pruteanu
,
G. J.
Ackland
,
W. C. K.
Poon
, and
J. S.
Loveday
, “
When immiscible becomes miscible—Methane in water at high pressures
,”
Sci. Adv.
3
,
e1700240
(
2017
).
15.
C. G.
Pruteanu
,
D.
Marenduzzo
, and
J. S.
Loveday
, “
Pressure-induced miscibility increase of CH4 in H2O: A computational study using classical potentials
,”
J. Phys. Chem. B
123
,
8091
(
2019
).
16.
C. G.
Pruteanu
,
V.
Naden Robinson
,
N.
Ansari
,
A.
Hassanali
,
S.
Scandolo
, and
J. S.
Loveday
, “
Squeezing oil into water under pressure: Inverting the hydrophobic effect
,”
J. Phys. Chem. Lett.
11
,
4826
4833
(
2020
).
17.
M.-S.
Lee
and
S.
Scandolo
, “
Mixtures of planetary ices at extreme conditions
,”
Nat. Commun.
2
,
185
(
2011
).
18.
S.
Horowitz
and
R. C.
Trievel
, “
Carbon-oxygen hydrogen bonding in biological structure and function
,”
J. Biol. Chem.
287
,
41576
41582
(
2012
).
19.
Y.
Mao
and
M.
Head-Gordon
, “
Probing blue-shifting hydrogen bonds with adiabatic energy decomposition analysis
,”
J. Phys. Chem. Lett.
10
,
3899
3905
(
2019
).
20.
S.
Pullanchery
,
S.
Kulik
,
B.
Rehl
,
A.
Hassanali
, and
S.
Roke
, “
Charge transfer across C–H⋯O hydrogen bonds stabilizes oil droplets in water
,”
Science
374
,
1366
1370
(
2021
).
21.
G. A.
Cisneros
,
K. T.
Wikfeldt
,
L.
Ojamäe
,
J.
Lu
,
Y.
Xu
,
H.
Torabifard
,
A. P.
Bartók
,
G.
Csányi
,
V.
Molinero
, and
F.
Paesani
, “
Modeling molecular interactions in water: From pairwise to many-body potential energy functions
,”
Chem. Rev.
116
,
7501
7528
(
2016
).
22.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
23.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Theory Comput.
10
,
1599
1607
(
2014
).
24.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
Development of a ‘first-principles’ water potential with flexible monomers. III. Liquid phase properties
,”
J. Chem. Theory Comput.
10
,
2906
2910
(
2014
).
25.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C.
Huy Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
, “
On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice
,”
J. Chem. Phys.
145
,
194504
(
2016
).
26.
M.
Riera
,
E. P.
Yeh
, and
F.
Paesani
, “
Data-driven many-body models for molecular fluids: CO2/H2O mixtures as a case study
,”
J. Chem. Theory Comput.
16
,
2246
2257
(
2020
).
27.
M.
Riera
,
A.
Hirales
,
R.
Ghosh
, and
F.
Paesani
, “
Data-driven many-body models with chemical accuracy for CH4/H2O mixtures
,”
J. Phys. Chem. B
124
,
11207
11221
(
2020
).
28.
See http://paesanigroup.ucsd.edu/software/mbx.html for MBX: A many-body energy and force calculator.
29.
D.
Trzesniak
,
A.-P. E.
Kunz
, and
W. F.
van Gunsteren
, “
A comparison of methods to compute the potential of mean force
,”
ChemPhysChem
8
,
162
169
(
2007
).
30.
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. I. Halide–water dimer potential energy surfaces
,”
J. Chem. Theory Comput.
12
,
2698
2705
(
2016
).
31.
M.
Riera
,
N.
Mardirossian
,
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. Alkali-water dimer potential energy surfaces
,”
J. Chem. Phys.
147
,
161715
(
2017
).
32.
M.
Riera
,
S. E.
Brown
, and
F.
Paesani
, “
Isomeric equilibria, nuclear quantum effects, and vibrational spectra of M+(H2O)n=1–3 clusters, with M = Li, Na, K, Rb, and Cs, through many-body representations
,”
J. Phys. Chem. A
122
,
5811
5821
(
2018
).
33.
F.
Paesani
,
P.
Bajaj
, and
M.
Riera
, “
Chemical accuracy in modeling halide ion hydration from many-body representations
,”
Adv. Phys. X
4
,
1631212
(
2019
).
34.
P.
Bajaj
,
M.
Riera
,
J. K.
Lin
,
Y. E.
Mendoza Montijo
,
J.
Gazca
, and
F.
Paesani
, “
Halide ion microhydration: Structure, energetics, and spectroscopy of small halide–water clusters
,”
J. Phys. Chem. A
123
,
2843
2852
(
2019
).
35.
P.
Bajaj
,
J. O.
Richardson
, and
F.
Paesani
, “
Ion-mediated hydrogen-bond rearrangement through tunnelling in the iodide–dihydrate complex
,”
Nat. Chem.
11
,
367
374
(
2019
).
36.
P.
Bajaj
,
D.
Zhuang
, and
F.
Paesani
, “
Specific ion effects on hydrogen-bond rearrangements in the halide–dihydrate complexes
,”
J. Phys. Chem. Lett.
10
,
2823
2828
(
2019
).
37.
M.
Riera
,
J. J.
Talbot
,
R. P.
Steele
, and
F.
Paesani
, “
Infrared signatures of isomer selectivity and symmetry breaking in the Cs+(H2O)3 complex using many-body potential energy functions
,”
J. Chem. Phys.
153
,
044306
(
2020
).
38.
A.
Caruso
and
F.
Paesani
, “
Data-driven many-body models enable a quantitative description of chloride hydration from clusters to bulk
,”
J. Chem. Phys.
155
,
064502
(
2021
).
39.
E. F.
Bull-Vulpe
,
M.
Riera
,
A. W.
Götz
, and
F.
Paesani
, “
MB-Fit: Software infrastructure for data-driven many-body potential energy functions
,”
J. Chem. Phys.
155
,
124801
(
2021
).
40.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
41.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
42.
B. J.
Braams
and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces in high dimensionality
,”
Int. Rev. Phys. Chem.
28
,
577
606
(
2009
).
43.
G. R.
Medders
and
F.
Paesani
, “
Infrared and Raman spectroscopy of liquid water through ‘first-principles’ many-body molecular dynamics
,”
J. Chem. Theory Comput.
11
,
1145
1154
(
2015
).
44.
G. R.
Medders
and
F.
Paesani
, “
On the interplay of the potential energy and dipole moment surfaces in controlling the infrared activity of liquid water
,”
J. Chem. Phys.
142
,
212411
(
2015
).
45.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
46.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
47.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
48.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
,
1011
1021
(
1992
).
49.
M.
Souaille
and
B.
Roux
, “
Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations
,”
Comput. Phys. Commun.
135
,
40
57
(
2001
).
50.
See http://membrane.urmc.rochester.edu/wordpress/?page_id=126 for WHAM: The weighted histogram analysis method.
51.
E. H.
Abramson
and
J. M.
Brown
, “
Equation of state of water based on speeds of sound measured in the diamond-anvil cell
,”
Geochim. Cosmochim. Acta
68
,
1827
1835
(
2004
).
52.
M.
Li
,
F.
Li
,
W.
Gao
,
C.
Ma
,
L.
Huang
,
Q.
Zhou
, and
Q.
Cui
, “
Brillouin scattering study of liquid methane under high pressures and high temperatures
,”
J. Chem. Phys.
133
,
044503
(
2010
).
53.
V.
Naden Robinson
,
M.
Marqués
,
Y.
Wang
,
Y.
Ma
, and
A.
Hermann
, “
Novel phases in ammonia-water mixtures under pressure
,”
J. Chem. Phys.
149
,
234501
(
2018
).
54.
D.
Chandler
, “
Hydrophobicity: Two faces of water
,”
Nature
417
,
491
(
2002
).
55.
D.
Thacker
,
K.
Sanagavarapu
,
B.
Frohm
,
G.
Meisl
,
T. P. J.
Knowles
, and
S.
Linse
, “
The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
25272
25283
(
2020
).
56.
J.
Roche
,
J. A.
Caro
,
D. R.
Norberto
,
P.
Barthe
,
C.
Roumestand
,
J. L.
Schlessman
,
A. E.
Garcia
,
B.
García-Moreno E.
, and
C. A.
Royer
, “
Cavities determine the pressure unfolding of proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
6945
6950
(
2012
).
57.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
, “
Perspective: How good is DFT for water?
,”
J. Chem. Phys.
144
,
130901
(
2016
).
58.
G.
Weck
,
J.
Eggert
,
P.
Loubeyre
,
N.
Desbiens
,
E.
Bourasseau
,
J.-B.
Maillet
,
M.
Mezouar
, and
M.
Hanfland
, “
Phase diagrams and isotopic effects of normal and deuterated water studied via x-ray diffraction up to 4.5 GPa and 500 K
,”
Phys. Rev. B
80
,
180202
(
2009
).
59.
J. S.
Loveday
,
R. J.
Nelmes
,
M.
Guthrie
,
D. D.
Klug
, and
J. S.
Tse
, “
Transition from cage clathrate to filled ice: The structure of methane hydrate III
,”
Phys. Rev. Lett.
87
,
215501
(
2001
).
60.
C. G.
Pruteanu
,
V. N.
Robinson
,
A. A.
Hassanali
,
S.
Scandolo
,
J.
Loveday
, and
G.
Ackland
, “
How to determine solubility in binary mixtures from neutron scattering data: The case of methane and water
,”
J. Chem. Phys.
156
,
054502
(
2022
).
61.
A.
Luzar
and
D.
Chandler
, “
Hydrogen-bond kinetics in liquid water
,”
Nature
379
,
55
(
1996
).

Supplementary Material

You do not currently have access to this content.