We propose and numerically implement a local probe of the static self-induced heterogeneity characterizing glass-forming liquids. This method relies on the equilibrium statistics of the overlap between pairs of configurations measured in mesoscopic cavities with unconstrained boundaries. By systematically changing the location of the probed cavity, we directly detect spatial variations of the overlap fluctuations. We provide a detailed analysis of the statistics of a local estimate of the configurational entropy, and we infer an estimate of the surface tension between amorphous states, ingredients that are both at the basis of the random first-order transition theory of glass formation. Our results represent the first direct attempt to visualize and quantify the self-induced heterogeneity underpinning the thermodynamics of glass formation. They pave the way for the development of coarse-grained effective theories and for a direct assessment of the role of thermodynamics in the activated dynamics of deeply supercooled liquids.

1.
L.
Berthier
and
G.
Biroli
,
Rev. Mod. Phys.
83
,
587
(
2011
).
2.
L.
Berthier
,
G.
Biroli
,
J. P.
Bouchaud
, and
R. L.
Jack
, “
Overview of different characterizations of dynamic heterogeneity
,” in
Dynamical Heterogeneities in Glasses, Colloids, and Granular Media
(
Oxford University Press
,
2011
), pp.
68
109
.
4.
L.
Berthier
,
G.
Biroli
,
J.-P.
Bouchaud
,
L.
Cipelletti
,
D.
El Masri
,
D.
L’Hôte
,
F.
Ladieu
, and
M.
Pierno
,
Science
310
,
1797
(
2005
).
5.
C.
Dalle-Ferrier
,
C.
Thibierge
,
C.
Alba-Simionesco
,
L.
Berthier
,
G.
Biroli
,
J.-P.
Bouchaud
,
F.
Ladieu
,
D.
L’Hôte
, and
G.
Tarjus
,
Phys. Rev. E
76
,
041510
(
2007
).
6.
T. R.
Kirkpatrick
,
D.
Thirumalai
, and
P. G.
Wolynes
,
Phys. Rev. A
40
,
1045
(
1989
).
7.
V.
Lubchenko
and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
58
,
235
(
2007
).
8.
P. G.
Wolynes
and
V.
Lubchenko
,
Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications
(
John Wiley & Sons
,
2012
).
9.
G.
Parisi
,
P.
Urbani
, and
F.
Zamponi
,
Theory of Simple Glasses: Exact Solutions in Infinite Dimensions
(
Cambridge University Press
,
2020
).
10.
J.-P.
Bouchaud
and
G.
Biroli
,
J. Chem. Phys.
121
,
7347
(
2004
).
11.
G.
Biroli
and
J. P.
Bouchaud
, “
The random first-order transition theory of glasses: A critical assessment
,” in
Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications
(
John Wiley & Sons
,
2012
), pp.
31
113
.
12.
A.
Montanari
and
G.
Semerjian
,
J. Stat. Phys.
125
,
23
(
2006
).
13.
S.
Franz
and
G.
Semerjian
, “
Analytical approaches to time-and length scales in models of glasses
,” in
Dynamical Heterogeneities in Glasses, Colloids, and Granular Media
(
Oxford University Press
,
2011
), pp.
407
450
.
14.
X.
Xia
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U. S. A.
97
,
2990
(
2000
).
15.
T.
Castellani
and
A.
Cavagna
,
J. Stat. Mech.: Theory Exp.
2005
,
P05012
.
16.
S.
Franz
and
G.
Parisi
,
Phys. Rev. Lett.
79
,
2486
(
1997
).
17.
C.
Cammarota
and
G.
Biroli
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
8850
(
2012
).
18.
W.
Kob
and
L.
Berthier
,
Phys. Rev. Lett.
110
,
245702
(
2013
).
19.
C.
Cammarota
and
G.
Biroli
,
J. Chem. Phys.
138
,
12A547
(
2013
).
20.
S.
Franz
and
G.
Parisi
,
J. Stat. Mech.: Theory Exp.
2013
,
P11012
.
21.
G.
Biroli
,
C.
Cammarota
,
G.
Tarjus
, and
M.
Tarzia
,
Phys. Rev. Lett.
112
,
175701
(
2014
).
22.
G.
Tarjus
, “
Overview of different characterizations of dynamic heterogeneity
,” in
Dynamical Heterogeneities in Glasses, Colloids, and Granular Media
(
Oxford University Press
,
2011
), pp.
39
67
.
23.
M.
Ozawa
,
C.
Scalliet
,
A.
Ninarello
, and
L.
Berthier
,
J. Chem. Phys.
151
,
084504
(
2019
).
24.
B.
Guiselin
,
L.
Berthier
, and
G.
Tarjus
,
SciPost Phys.
12
,
91
(
2022
).
25.
G.
Parisi
and
B.
Seoane
,
Phys. Rev. E
89
,
022309
(
2014
).
26.
C.
Cammarota
,
A.
Cavagna
,
I.
Giardina
,
G.
Gradenigo
,
T. S.
Grigera
,
G.
Parisi
, and
P.
Verrocchio
,
Phys. Rev. Lett.
105
,
055703
(
2010
).
27.
L.
Berthier
,
Phys. Rev. E
88
,
022313
(
2013
).
28.
L.
Berthier
and
D.
Coslovich
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
11668
(
2014
).
29.
C.
Cammarota
and
B.
Seoane
,
Phys. Rev. B
94
,
180201
(
2016
).
30.
L.
Berthier
and
R. L.
Jack
,
Phys. Rev. Lett.
114
,
205701
(
2015
).
31.
R. L.
Jack
and
J. P.
Garrahan
,
Phys. Rev. Lett.
116
,
055702
(
2016
).
32.
A.
Cavagna
,
T. S.
Grigera
, and
P.
Verrocchio
,
Phys. Rev. Lett.
98
,
187801
(
2007
).
33.
G.
Biroli
,
J.-P.
Bouchaud
,
A.
Cavagna
,
T. S.
Grigera
, and
P.
Verrocchio
,
Nat. Phys.
4
,
771
(
2008
).
34.
K. H.
Nagamanasa
,
S.
Gokhale
,
A. K.
Sood
, and
R.
Ganapathy
,
Nat. Phys.
11
,
403
(
2015
).
35.
S.
Yaida
,
L.
Berthier
,
P.
Charbonneau
, and
G.
Tarjus
,
Phys. Rev. E
94
,
032605
(
2016
).
36.
L.
Berthier
,
P.
Charbonneau
, and
S.
Yaida
,
J. Chem. Phys.
144
,
024501
(
2016
).
37.
L.
Berthier
,
P.
Charbonneau
,
A.
Ninarello
,
M.
Ozawa
, and
S.
Yaida
,
Nat. Commun.
10
,
1508
(
2019
).
38.
B.
Guiselin
,
L.
Berthier
, and
G.
Tarjus
,
Phys. Rev. E
102
,
042129
(
2020
).
39.
C.
Cammarota
,
A.
Cavagna
,
G.
Gradenigo
,
T. S.
Grigera
, and
P.
Verrocchio
,
J. Stat. Mech.: Theory Exp.
2009
,
L12002
.
40.
C.
Cammarota
,
A.
Cavagna
,
G.
Gradenigo
,
T. S.
Grigera
, and
P.
Verrocchio
,
J. Chem. Phys.
131
,
194901
(
2009
).
41.
D.
Ganapathi
,
K. H.
Nagamanasa
,
A.
Sood
, and
R.
Ganapathy
,
Nat. Commun.
9
,
397
(
2018
).
42.
L.
Berthier
,
M.
Ozawa
, and
C.
Scalliet
,
J. Chem. Phys.
150
,
160902
(
2019
).
44.
S.
Sengupta
,
S.
Karmakar
,
C.
Dasgupta
, and
S.
Sastry
,
Phys. Rev. Lett.
109
,
095705
(
2012
).
45.
L.
Berthier
,
P.
Charbonneau
,
D.
Coslovich
,
A.
Ninarello
,
M.
Ozawa
, and
S.
Yaida
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
11356
(
2017
).
46.
M.
Ozawa
,
G.
Parisi
, and
L.
Berthier
,
J. Chem. Phys.
149
,
154501
(
2018
).
47.
C.
Cammarota
,
G.
Biroli
,
M.
Tarzia
, and
G.
Tarjus
,
Phys. Rev. Lett.
106
,
115705
(
2011
).
48.
C.
Cammarota
and
G.
Biroli
,
Europhys. Lett.
98
,
36005
(
2012
).
49.
X.
Xia
and
P. G.
Wolynes
,
Phys. Rev. Lett.
86
,
5526
(
2001
).
50.
V.
Lubchenko
and
P. G.
Wolynes
,
J. Chem. Phys.
121
,
2852
(
2004
).
51.
M.
Dzero
,
J.
Schmalian
, and
P. G.
Wolynes
,
Phys. Rev. B
80
,
024204
(
2009
).
52.
J. P.
Bouchaud
and
M.
Mézard
,
J. Phys. I
4
,
1109
(
1994
).
53.
J. D.
Stevenson
,
A. M.
Walczak
,
R. W.
Hall
, and
P. G.
Wolynes
,
J. Chem. Phys.
129
,
194505
(
2008
).
54.
G.
Biroli
,
C.
Cammarota
,
G.
Tarjus
, and
M.
Tarzia
,
Phys. Rev. B
98
,
174205
(
2018
).
55.
G.
Biroli
,
C.
Cammarota
,
G.
Tarjus
, and
M.
Tarzia
,
Phys. Rev. B
98
,
174206
(
2018
).
56.
57.
H.
Mizuno
,
S.
Mossa
, and
J.-L.
Barrat
,
Phys. Rev. E
87
,
042306
(
2013
).
58.
A.
Shakerpoor
,
E.
Flenner
, and
G.
Szamel
,
Soft Matter
16
,
914
(
2020
).
59.
A.
Widmer-Cooper
,
H.
Perry
,
P.
Harrowell
, and
D. R.
Reichman
,
Nat. Phys.
4
,
711
(
2008
).
60.
E.
Lerner
and
E.
Bouchbinder
,
J. Chem. Phys.
148
,
214502
(
2018
).
61.
A.
Barbot
,
M.
Lerbinger
,
A.
Hernandez-Garcia
,
R.
García-García
,
M. L.
Falk
,
D.
Vandembroucq
, and
S.
Patinet
,
Phys. Rev. E
97
,
033001
(
2018
).
62.
D.
Coslovich
,
Phys. Rev. E
83
,
051505
(
2011
).
63.
A.
Malins
,
J.
Eggers
,
C. P.
Royall
,
S. R.
Williams
, and
H.
Tanaka
,
J. Chem. Phys.
138
,
12A535
(
2013
).
64.
A.
Malins
,
S. R.
Williams
,
J.
Eggers
, and
C. P.
Royall
,
J. Chem. Phys.
139
,
234506
(
2013
).
65.
H.
Tong
and
H.
Tanaka
,
Phys. Rev. X
8
,
011041
(
2018
).
66.
J.
Paret
,
R. L.
Jack
, and
D.
Coslovich
,
J. Chem. Phys.
152
,
144502
(
2020
).
67.
E.
Boattini
,
S.
Marín-Aguilar
,
S.
Mitra
,
G.
Foffi
,
F.
Smallenburg
, and
L.
Filion
,
Nat. Commun.
11
,
5479
(
2020
).
68.
S.
Franz
,
J. Stat. Mech.: Theory Exp.
2005
,
P04001
.
69.
M.
Dzero
,
J.
Schmalian
, and
P. G.
Wolynes
,
Phys. Rev. B
72
,
100201
(
2005
).
70.
G. M.
Hocky
,
D.
Coslovich
,
A.
Ikeda
, and
D. R.
Reichman
,
Phys. Rev. Lett.
113
,
157801
(
2014
).
71.
P.
Charbonneau
,
E.
Dyer
,
J.
Lee
, and
S.
Yaida
,
J. Stat. Mech.: Theory Exp.
2016
,
074004
.
72.
K.
Hukushima
and
K.
Nemoto
,
J. Phys. Soc. Jpn.
65
,
1604
(
1996
).
73.
Y.
Brumer
and
D. R.
Reichman
,
J. Phys. Chem. B
108
,
6832
(
2004
).
74.
A.
Ninarello
,
L.
Berthier
, and
D.
Coslovich
,
Phys. Rev. X
7
,
021039
(
2017
).
75.
B.
Guiselin
,
C.
Scalliet
, and
L.
Berthier
,
Nat. Phys.
,
18
,
468
472
(
2022
).
76.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
77.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
78.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
79.
L.
Berthier
,
E.
Flenner
,
C. J.
Fullerton
,
C.
Scalliet
, and
M.
Singh
,
J. Stat. Mech.: Theory Exp.
2019
,
064004
.
80.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
81.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
).
82.
B.
Guiselin
,
G.
Tarjus
, and
L.
Berthier
,
J. Chem. Phys.
153
,
224502
(
2020
).
83.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
84.
M.
Newman
and
G.
Barkema
,
Monte Carlo Methods in Statistical Physics
(
Oxford University Press
,
New York
,
1999
).
85.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
,
1011
(
1992
).
86.
R. C.
Tolman
,
J. Chem. Phys.
17
,
333
(
1949
).
87.
G.
Grinstein
and
S.-K.
Ma
,
Phys. Rev. B
28
,
2588
(
1983
).
88.
J. D.
Stevenson
,
J.
Schmalian
, and
P. G.
Wolynes
,
Nat. Phys.
2
,
268
(
2006
).
89.
G.
Biroli
and
C.
Cammarota
,
Phys. Rev. X
7
,
011011
(
2017
).
90.
M.
Wyart
and
M. E.
Cates
,
Phys. Rev. Lett.
119
,
195501
(
2017
).
91.
L.
Berthier
,
G.
Biroli
,
J.-P.
Bouchaud
, and
G.
Tarjus
,
J. Chem. Phys.
150
,
094501
(
2019
).
92.
S. T.
Bramwell
,
P. C. W.
Holdsworth
, and
J.-F.
Pinton
,
Nature
396
,
552
(
1998
).
93.
S. T.
Bramwell
,
K.
Christensen
,
J.-Y.
Fortin
,
P. C. W.
Holdsworth
,
H. J.
Jensen
,
S.
Lise
,
J. M.
López
,
M.
Nicodemi
,
J.-F.
Pinton
, and
M.
Sellitto
,
Phys. Rev. Lett.
84
,
3744
(
2000
).
94.
S.
Bramwell
,
J.-Y.
Fortin
,
P.
Holdsworth
,
S.
Peysson
,
J.-F.
Pinton
,
B.
Portelli
, and
M.
Sellitto
,
Phys. Rev. E
63
,
041106
(
2001
).
95.
D.
Coslovich
and
R. L.
Jack
,
J. Stat. Mech.: Theory Exp.
2016
,
074012
.
96.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
You do not currently have access to this content.