Dynamic shear-modulus data are presented for two silicone oils DC704 and DC705 for frequencies between 1 mHz and 10 kHz at temperatures covering more than five decades of relaxation-time variation. Data are fitted to the alpha part of a phenomenological model previously shown to describe well the dynamic shear modulus of squalane, which has a large beta process [Hecksher et al., J. Chem. Phys. 146, 154504 (2017)]. That model is characterized by additivity of the alpha and beta shear compliance and by a high-frequency decay of the alpha process in proportion to ω−1/2, where ω is the angular frequency. The fits of the alpha part of this model to the DC704 and DC705 data are compared to fits by a Havriliak–Negami type model, a Barlow–Erginsav–Lamb model, and a Cole–Davidson type model. At all temperatures, the best fit is obtained by the alpha part of the squalane model. This strengthens the conjecture that so-called t-relaxation, leading to high-frequency loss decays proportional to ω−1/2, is generic to the alpha relaxation of supercooled liquids [J. C. Dyre, Phys. Rev. E 74, 021502 (2006); Nielsen et al., J. Chem. Phys. 130, 154508 (2009); and Pabst et al., J. Phys. Chem. Lett. 12, 3685–3690 (2021)].

1.
A. J.
Barlow
,
A.
Erginsav
, and
J.
Lamb
, “
Viscoelastic relaxation of supercooled liquids
,”
Proc. R. Soc. London, Ser. A
298
,
481
(
1967
).
2.
G.
Harrison
,
The Dynamic Properties of Supercooled Liquids
(
Academic
,
New York
,
1976
).
3.
T.
Christensen
and
N. B.
Olsen
, “
A rheometer for the measurement of a high shear modulus covering more than seven decades of frequency below 50 kHz
,”
Rev. Sci. Instrum.
66
,
5019
5031
(
1995
).
4.
R. D.
Deegan
,
R. L.
Leheny
,
N.
Menon
,
S. R.
Nagel
, and
D. C.
Venerus
, “
Dynamic shear modulus of tricresyl phosphate and squalane
,”
J. Phys. Chem. B
103
,
4066
4070
(
1999
).
5.
B.
Jakobsen
,
K.
Niss
, and
N. B.
Olsen
, “
Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids
,”
J. Chem. Phys.
123
,
234511
(
2005
).
6.
J. C.
Dyre
, “
Colloquium: The glass transition and elastic models of glass-forming liquids
,”
Rev. Mod. Phys.
78
,
953
972
(
2006
).
7.
T.
Hecksher
,
N. B.
Olsen
, and
J. C.
Dyre
, “
Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane data
,”
J. Chem. Phys.
146
,
154504
(
2017
).
8.
P.
Weigl
,
T.
Hecksher
,
J. C.
Dyre
,
T.
Walther
, and
T.
Blochowicz
, “
Identity of the local and macroscopic dynamic elastic responses in supercooled 1-propanol
,”
Phys. Chem. Chem. Phys.
23
,
16537
16541
(
2021
).
9.
M. J. P.
Comuñas
,
X.
Paredes
,
F. M.
Gaciño
,
J.
Fernández
,
J. P.
Bazile
,
C.
Boned
,
J. L.
Daridon
,
G.
Galliero
,
J.
Pauly
,
K. R.
Harris
,
M. J.
Assael
, and
S. K.
Mylona
, “
Reference correlation of the viscosity of squalane from 273 to 373 K at 0.1 MPa
,”
J. Phys. Chem. Ref. Data
42
,
033101
(
2013
).
10.
K. A. G.
Schmidt
,
D.
Pagnutti
,
M. D.
Curran
,
A.
Singh
,
J. P. M.
Trusler
,
G. C.
Maitland
, and
M.
McBride-Wright
, “
New experimental data and reference models for the viscosity and density of squalane
,”
J. Chem. Eng. Data
60
,
137
150
(
2015
).
11.
S. H.
Glarum
, “
Dielectric relaxation of isoamyl bromide
,”
J. Chem. Phys.
33
,
639
643
(
1960
).
12.
M. A.
Isakovich
and
I. A.
Chaban
, “
Propagation of sound in strongly viscous liquids
,”
Sov. Phys. JETP
23
,
893
905
(
1966
).
13.
R. H.
Doremus
, “
Delayed elasticity in ionic conductors
,”
J. Appl. Phys.
41
,
3366
3371
(
1970
).
14.
C. J.
Montrose
and
T. A.
Litovitz
, “
Structural-relaxation dynamics in liquids
,”
J. Acoust. Soc. Am.
47
,
1250
1257
(
1970
).
15.
C. K.
Majumbar
, “
Stress relaxation function of glass
,”
Solid State Commun.
9
,
1087
1090
(
1971
).
16.
R.
Kimmich
and
G.
Voigt
, “
Defect diffusion models in NMR and dielectric relaxation
,”
Z. Naturforsch., A
33
,
1294
1306
(
1978
).
17.
J.
Lamb
, “
Viscoelasticity and lubrication: A review of liquid properties
,”
J. Rheol.
22
,
317
347
(
1978
).
18.
G.
Wyllie
, “
Relaxation by defect diffusion in an elastic amorphous medium
,”
J. Chim. Phys.
76
,
1017
1022
(
1979
).
19.
C.
Cunat
, “
Thermodynamic treatment of relaxation in frozen-in systems. ‘Universality’ of the distribution law for relaxation times
,”
Z. Phys. Chem.
157
,
419
423
(
1988
).
20.
C. A.
Condat
, “
Defect diffusion and closed-time distributions for ionic channels in cell membranes
,”
Phys. Rev. A
39
,
2112
2125
(
1989
).
21.
S. V.
Lishchuk
and
N. P.
Malomuzh
, “
Clusterization in supercooled states of glycerol-like liquids and its manifestations in different phenomena
,”
J. Chem. Phys.
106
,
6160
6170
(
1997
).
22.
J. C.
Dyre
, “
Solidity of viscous liquids. IV. Density fluctuations
,”
Phys. Rev. E
74
,
021502
(
2006
).
23.
J. C.
Dyre
, “
Solidity of viscous liquids. V. Long-wavelength dominance of the dynamics
,”
Phys. Rev. E
76
,
041508
(
2007
).
24.
F.
Pabst
,
J. P.
Gabriel
,
T.
Böhmer
,
P.
Weigl
,
A.
Helbling
,
T.
Richter
,
P.
Zourchang
,
T.
Walther
, and
T.
Blochowicz
, “
Generic structural relaxation in supercooled liquids
,”
J. Phys. Chem. Lett.
12
,
3685
3690
(
2021
).
25.
A. I.
Nielsen
,
T.
Christensen
,
B.
Jakobsen
,
K.
Niss
,
N. B.
Olsen
,
R.
Richert
, and
J. C.
Dyre
, “
Prevalence of approximate t relaxation for the dielectric α process in viscous organic liquids
,”
J. Chem. Phys.
130
,
154508
(
2009
).
26.
K. S.
Cole
and
R. H.
Cole
, “
Dispersion and absorption in dielectrics I. Alternating current characteristics
,”
J. Chem. Phys.
9
,
341
351
(
1941
).
27.
T.
Hecksher
,
N. B.
Olsen
,
K. A.
Nelson
,
J. C.
Dyre
, and
T.
Christensen
, “
Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers
,”
J. Chem. Phys.
138
,
12A543
(
2013
).
28.
B.
Igarashi
,
T.
Christensen
,
E. H.
Larsen
,
N. B.
Olsen
,
I. H.
Pedersen
,
T.
Rasmussen
, and
J. C.
Dyre
, “
A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids
,”
Rev. Sci. Instrum.
79
,
045105
(
2008
).
29.
B.
Igarashi
,
T.
Christensen
,
E. H.
Larsen
,
N. B.
Olsen
,
I. H.
Pedersen
,
T.
Rasmussen
, and
J. C.
Dyre
, “
An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids
,”
Rev. Sci. Instrum.
79
,
045106
(
2008
).
30.
J. C.
Dyre
,
N. B.
Olsen
, and
T.
Christensen
, “
Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids
,”
Phys. Rev. B
53
,
2171
2174
(
1996
).
31.
D. J.
Plazek
, “
Temperature dependence of the viscoelastic behavior of polystyrene
,”
J. Phys. Chem.
69
,
3480
3487
(
1965
).
32.
U.
Buchenau
, “
Retardation and flow at the glass transition
,”
Phys. Rev. E
93
,
032608
(
2016
).
33.
U.
Buchenau
, “
Pragmatical access to the viscous flow of undercooled liquids
,”
Phys. Rev. E
95
,
062603
(
2017
).
You do not currently have access to this content.