Colloids may be treated as “big atoms” so that they are good models for atomic and molecular systems. Colloidal hard disks are, therefore, good models for 2d materials, and although their phase behavior is well characterized, rheology has received relatively little attention. Here, we exploit a novel, particle-resolved, experimental setup and complementary computer simulations to measure the shear rheology of quasi-hard-disk colloids in extreme confinement. In particular, we confine quasi-2d hard disks in a circular “corral” comprised of 27 particles held in optical traps. Confinement and shear suppress hexagonal ordering that would occur in the bulk and create a layered fluid. We measure the rheology of our system by balancing drag and driving forces on each layer. Given the extreme confinement, it is remarkable that our system exhibits rheological behavior very similar to unconfined 2d and 3d hard particle systems, characterized by a dynamic yield stress and shear-thinning of comparable magnitude. By quantifying particle motion perpendicular to shear, we show that particles become more tightly confined to their layers with no concomitant increase in density upon increasing the shear rate. Shear thinning is, therefore, a consequence of a reduction in dissipation due to weakening in interactions between layers as the shear rate increases. We reproduce our experiments with Brownian dynamics simulations with Hydrodynamic Interactions (HI) included at the level of the Rotne–Prager tensor. That the inclusion of HI is necessary to reproduce our experiments is evidence of their importance in transmission of momentum through the system.

1.
H.-W.
Hu
,
G. A.
Carson
, and
S.
Granick
, “
Relaxation time of confined liquids under shear
,”
Phys. Rev. Lett.
66
,
2758
2761
(
1991
).
2.
A. L.
Demirel
and
S.
Granick
, “
Glasslike transition of a confined simple fluid
,”
Phys. Rev. Lett.
77
,
2261
2264
(
1996
).
3.
J.
Klein
and
E.
Kumacheva
, “
Simple liquids confined to molecularly thin layers. i. confinement-induced liquid-to-solid phase transitions
,”
J. Chem. Phys.
108
,
6996
7009
(
1998
).
4.
R. G.
Horn
and
J. N.
Israelachvili
, “
Direct measurement of structural forces between two surfaces in a nonpolar liquid
,”
J. Chem. Phys.
75
,
1400
1411
(
1981
).
5.
H. K.
Christenson
,
D. W. R.
Gruen
,
R. G.
Horn
, and
J. N.
Israelachvili
, “
Structuring in liquid alkanes between solid surfaces: Force measurements and mean-field theory
,”
J. Chem. Phys.
87
,
1834
1841
(
1987
).
6.
J.
Klein
and
E.
Kumacheva
, “
Confinement-induced phase transitions in simple liquids
,”
Science
269
,
816
819
(
1995
).
7.
U.
Raviv
,
P.
Laurat
, and
J.
Klein
, “
Fluidity of water confined to subnanometre films
,”
Nature
413
,
51
54
(
2001
).
8.
M.
Antognozzi
,
A. D. L.
Humphris
, and
M. J.
Miles
, “
Observation of molecular layering in a confined water film and study of the layers viscoelastic properties
,”
Appl. Phys. Lett.
78
,
300
302
(
2001
).
9.
A.
Maestro
,
O. S.
Deshmukh
,
F.
Mugele
, and
D.
Langevin
, “
Interfacial assembly of surfactant-decorated nanoparticles: On the rheological description of a colloidal 2D glass
,”
Langmuir
31
,
6289
6297
(
2015
).
10.
T.
Feng
,
D. A.
Hoagland
, and
T. P.
Russell
, “
Interfacial rheology of polymer/carbon nanotube films co-assembled at the oil/water interface
,”
Soft Matter
12
,
8701
8709
(
2016
).
11.
P.
Cicuta
,
E. J.
Stancik
, and
G. G.
Fuller
, “
Shearing or compressing a soft glass in 2D: Time-concentration superposition
,”
Phys. Rev. Lett.
90
,
236101
(
2003
).
12.
F. S.
Ariola
,
A.
Krishnan
, and
E. A.
Vogler
, “
Interfacial rheology of blood proteins adsorbed to the aqueous-buffer/air interface
,”
Biomaterials
27
,
3404
3412
(
2006
).
13.
D. B.
Allan
,
D. M.
Firester
,
V. P.
Allard
,
D. H.
Reich
,
K. J.
Stebe
, and
R. L.
Leheny
, “
Linear and nonlinear microrheology of lysozyme layers forming at the air–water interface
,”
Soft Matter
10
,
7051
7060
(
2014
).
14.
I.
Williams
and
T. M.
Squires
, “
Evolution and mechanics of mixed phospholipid fibrinogen monolayers
,”
J. R. Soc. Interface
15
,
20170895
(
2018
).
15.
K. H.
Kim
,
S. Q.
Choi
,
J. A.
Zasadzinski
, and
T. M.
Squires
, “
Interfacial microrheology of DPPC monolayers at the air–water interface
,”
Soft Matter
7
,
7782
7789
(
2011
).
16.
A. K.
Sachan
,
S. Q.
Choi
,
K. H.
Kim
,
Q.
Tang
,
L.
Hwang
,
K. Y. C.
Lee
,
T. M.
Squires
, and
J. A.
Zasadzinski
, “
Interfacial rheology of coexisting solid and fluid monolayers
,”
Soft Matter
13
,
1481
1492
(
2017
).
17.
I.
Williams
,
J. A.
Zasadzinski
, and
T. M.
Squires
, “
Interfacial rheology and direct imaging reveal domain-templated network formation in phospholipid monolayers penetrated by fibrinogen
,”
Soft Matter
15
,
9076
9084
(
2019
).
18.
K. H.
Kim
,
S. Q.
Choi
,
J. A.
Zasadzinski
, and
T. M.
Squires
, “
Nonlinear chiral rheology of phospholipid monolayers
,”
Soft Matter
14
,
2476
2483
(
2018
).
19.
Z. A.
Zell
,
A.
Nowbahar
,
V.
Mansard
,
L. G.
Leal
,
S. S.
Deshmukh
,
J. M.
Mecca
,
C. J.
Tucker
, and
T. M.
Squires
, “
Surface shear inviscidity of soluble surfactants
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
3677
3682
(
2014
).
20.
J. W.
Anseth
,
A.
Bialek
,
R. M.
Hill
, and
G. G.
Fuller
, “
Interfacial rheology of graft-type polymeric siloxane surfactants
,”
Langmuir
19
,
6349
6356
(
2003
).
21.
S.
Cappelli
,
A. M.
de Jong
,
J.
Baudry
, and
M. W. J.
Prins
, “
Interfacial rheometry of polymer at a water–oil interface by intra-pair magnetophoresis
,”
Soft Matter
12
,
5551
5562
(
2016
).
22.
M.
Pepicelli
,
T.
Verwijlen
,
T. A.
Tervoort
, and
J.
Vermant
, “
Characterization and modelling of Langmuir interfaces with finite elasticity
,”
Soft Matter
13
,
5977
5990
(
2017
).
23.
Y.
Fan
,
S.
Simon
, and
J.
Sjöblom
, “
Interfacial shear rheology of asphaltenes at oil–water interface and its relation to emulsion stability: Influence of concentration, solvent aromaticity and nonionic surfactant
,”
Colloids Surf., A
366
,
120
128
(
2010
).
24.
C.-C.
Chang
,
A.
Nowbahar
,
V.
Mansard
,
I.
Williams
,
J.
Mecca
,
A. K.
Schmitt
,
T. H.
Kalantar
,
T.-C.
Kuo
, and
T. M.
Squires
, “
Interfacial rheology and heterogeneity of aging asphaltene layers at the water-oil interface
,”
Langmuir
34
,
5409
5415
(
2018
).
25.
C.-C.
Chang
,
I.
Williams
,
A.
Nowbahar
,
V.
Mansard
,
J.
Mecca
,
K. A.
Whitaker
,
A. K.
Schmitt
,
C. J.
Tucker
,
T. H.
Kalantar
,
T.-C.
Kuo
, and
T. M.
Squires
, “
Effect of ethylcellulose on the rheology and mechanical heterogeneity of asphaltene films at the oil–water interface
,”
Langmuir
35
,
9374
9381
(
2019
).
26.
G.
Katgert
,
M. E.
Möbius
, and
M.
van Hecke
, “
Rate dependence and role of disorder in linearly sheared two-dimensional foams
,”
Phys. Rev. Lett.
101
,
058301
(
2008
).
27.
C.
Raufaste
,
A.
Foulon
, and
B.
Dollet
, “
Dissipation in quasi-two-dimensional flowing foams
,”
Phys. Fluids
21
,
053102
(
2009
).
28.
K. W.
Desmond
and
E. R.
Weeks
, “
Measurement of stress redistribution in flowing emulsions
,”
Phys. Rev. Lett.
115
,
098302
(
2015
).
29.
T. T.
Hormel
,
S. Q.
Kurihara
,
M. K.
Brennan
,
M. C.
Wozniak
, and
R.
Parthasarathy
, “
Measuring lipid membrane viscosity using rotational and translational probe diffusion
,”
Phys. Rev. Lett.
112
,
188101
(
2014
).
30.
Y.
Feng
,
J.
Goree
, and
B.
Liu
, “
Viscoelasticity of 2D liquids quantified in a dusty plasma experiment
,”
Phys. Rev. Lett.
105
,
025002
(
2010
).
31.
K.
Masschaele
,
J.
Fransaer
, and
J.
Vermant
, “
Flow-induced structure in colloidal gels: Direct visualization of model 2D suspensions
,”
Soft Matter
7
,
7717
7726
(
2011
).
32.
I.
Buttinoni
,
Z. A.
Zell
,
T. M.
Squires
, and
L.
Isa
, “
Colloidal binary mixtures at fluid-fluid interfaces under steady shear: Structural, dynamical and mechanical response
,”
Soft Matter
11
,
8313
8321
(
2015
).
33.
O. S.
Deshmukh
,
D.
van den Ende
,
M.
Cohen Stuart
,
F.
Mugele
, and
M. H. G.
Duits
, “
Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology
,”
Adv. Colloid Interface Sci.
222
,
215
227
(
2015
).
34.
I.
Buttinoni
,
M.
Steinacher
,
H. T.
Spanke
,
J.
Pokki
,
S.
Bahmann
,
B.
Nelson
,
G.
Foffi
, and
L.
Isa
, “
Colloidal polycrystalline monolayers under oscillatory shear
,”
Phys. Rev. E
95
,
012610
(
2017
).
35.
S. A.
Rice
, “
Structure in confined colloid suspensions
,”
Chem. Phys. Lett.
479
,
1
13
(
2009
).
36.
A.
Ivlev
,
H.
Löwen
,
G. E.
Morfill
, and
C. P.
Royall
,
Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids
(
World Scientific Publishing Co.; Singapore Scientific
,
2012
).
37.
H.
Löwen
, “
Twenty years of confined colloids: From confinement-induced freezing to giant breathing
,”
J. Phys.: Condens. Matter
21
,
474203
(
2009
).
38.
T. S.
Majmudar
and
R. P.
Behringer
, “
Contact force measurements and stress-induced anisotropy in granular materials
,”
Nature
435
,
1079
1082
(
2005
).
39.
P. M.
Reis
,
R. A.
Ingale
, and
M. D.
Shattuck
, “
Crystallization of a quasi-two-dimensional granular fluid
,”
Phys. Rev. Lett.
96
,
258001
(
2006
).
40.
G.
Midi
, “
On dense granular flows
,”
Eur. Phys. J. E
14
,
341
365
(
2004
).
41.
Y.
Forterre
and
O.
Pouliquen
, “
Flows of dense granular media
,”
Annu. Rev. Fluid Mech.
40
,
1
24
(
2008
).
42.
K. E.
Daniels
and
R. P.
Behringer
, “
Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow
,”
Phys. Rev. Lett.
94
,
168001
(
2005
).
43.
J. A.
Dijksman
,
G. H.
Wortel
,
L. T. H.
van Dellen
,
O.
Dauchot
, and
M.
van Hecke
, “
Jamming, yielding, and rheology of weakly vibrated granular media
,”
Phys. Rev. Lett.
107
,
108303
(
2011
).
44.
F.
Boyer
,
É.
Guazzelli
, and
O.
Pouliquen
, “
Unifying suspension and granular rheology
,”
Phys. Rev. Lett.
107
,
188301
(
2011
).
45.
K.
Watanabe
,
T.
Kawasaki
, and
H.
Tanaka
, “
Structural origin of enhanced slow dynamics near a wall in glass-forming systems
,”
Nat. Mater.
10
,
512
520
(
2011
).
46.
S.
Mandal
and
D. V.
Khakhar
, “
Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology
,”
Phys. Rev. E.
96
,
050901(R)
(
2017
).
47.
A.
Ikeda
,
L.
Berthier
, and
P.
Sollich
, “
Unified study of glass and jamming rheology in soft particle systems
,”
Phys. Rev. Lett.
109
,
018301
(
2012
).
48.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
15326
15330
(
2015
).
49.
J. F.
Morris
, “
Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena
,”
Annu. Rev. Fluid Mech.
52
,
121
144
(
2019
).
50.
P.
Scheidler
,
W.
Kob
, and
K.
Binder
, “
The relaxation dynamics of a confined glassy simple liquid
,”
Eur. Phys. J. E
12
,
5
9
(
2003
).
51.
C. R.
Nugent
,
K. V.
Edmond
,
H. N.
Patel
, and
E. R.
Weeks
, “
Colloidal glass transition observed in confinement
,”
Phys. Rev. Lett.
99
,
025702
(
2007
).
52.
P. S.
Sarangapani
and
Y.
Zhu
, “
Impeded structural relaxation of a hard-sphere colloidal suspension under confinement
,”
Phys. Rev. E
77
,
010501(R)
(
2008
).
53.
E. C.
Oğuz
,
A.
Reinmüller
,
H. J.
Schöpe
,
T.
Palberg
,
R.
Messina
, and
H.
Löwen
, “
Crystalline multilayers of charged colloids in soft confinement: Experiment versus theory
,”
J. Phys.: Condens. Matter
24
,
464123
(
2012
).
54.
L.
Isa
,
R.
Besseling
, and
W. C. K.
Poon
, “
Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions
,”
Phys. Rev. Lett.
98
,
198305
(
2007
).
55.
P.
Huber
, “
Soft matter in hard confinement: Phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media
,”
J. Phys.: Condens. Matter
27
,
103102
(
2015
).
56.
S. P.
Meeker
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Concentration dependence of the low-shear viscosity of suspensions of hard-sphere colloids
,”
Phys. Rev. E
55
,
5718
5722
(
1997
).
57.
J. M.
Brader
, “
Nonlinear rheology of colloidal dispersions
,”
J. Phys.: Condens. Matter
22
,
363101
(
2010
).
58.
X.
Cheng
,
J. H.
McCoy
,
J. N.
Israelachvili
, and
I.
Cohen
, “
Imaging the microscopic structure of shear thinning and thickening colloidal suspensions
,”
Science
333
,
1276
1279
(
2011
).
59.
K. N.
Pham
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Yielding behavior of repulsion- and attraction-dominated colloidal glasses
,”
J. Rheol.
52
,
649
676
(
2008
).
60.
M.
Zackrisson
,
A.
Stradner
,
P.
Schurtenberger
, and
J.
Bergenholtz
, “
Structure, dynamics, and rheology of concentrated dispersions of poly(ethylene glycol)-grafted colloids
,”
Phys. Rev. E
73
,
011408
(
2006
).
61.
D.
Bonn
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
62.
O.
Henrich
,
F.
Weysser
,
M. E.
Cates
, and
M.
Fuchs
, “
Hard discs under steady shear: Comparison of Brownian dynamics simulations and mode coupling theory
,”
Philos. Trans. R. Soc., A
367
,
5033
5050
(
2009
).
63.
K.
van der Vaart
,
Y.
Rahmani
,
R.
Zargar
,
Z.
Hu
,
D.
Bonn
, and
P.
Schall
, “
Rheology of concentrated soft and hard-sphere suspensions
,”
J. Rheol.
57
,
1195
1209
(
2013
).
64.
A.
Le Grand
and
G.
Petekidis
, “
Effects of particle softness on the rheology and yielding of colloidal glasses
,”
Rheol. Acta
47
,
579
590
(
2008
).
65.
J.
Bender
and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,”
J. Rheol.
40
,
899
916
(
1996
).
66.
P.
D’Haene
,
J.
Mewis
, and
G. G.
Fuller
, “
Scattering dichroism measurements of flow-induced structure of a shear thickening suspension
,”
J. Colloid Interface Sci.
156
,
350
358
(
1993
).
67.
B. M.
Guy
,
M.
Hermes
, and
W. C. K.
Poon
, “
Towards a unified description of the rheology of hard-particle suspensions
,”
Phys. Rev. Lett.
115
,
088304
(
2015
).
68.
R.
Besseling
,
E. R.
Weeks
,
A. B.
Schofield
, and
W. C. K.
Poon
, “
Three-dimensional imaging of colloidal glasses under steady shear
,”
Phys. Rev. Lett.
99
,
028301
(
2007
).
69.
P.
Schall
,
D. A.
Weitz
, and
F.
Spaepen
, “
Structural rearrangements that govern flow in colloidal glasses
,”
Science
318
,
1895
1899
(
2007
).
70.
N.
Koumakis
,
A.
Panvouxoglou
,
A. S.
Poulos
, and
G.
Petekidis
, “
Direct comparison of the rheology of model hard and soft particle glasses
,”
Soft Matter
8
,
4272
4284
(
2012
).
71.
M.
Brunner
,
C.
Bechinger
,
W.
Strepp
,
V.
Lobaskin
, and
H. H.
von Grünberg
, “
Density-dependent pair interactions in 2D colloidal suspensions
,”
Europhys. Lett.
58
,
926
932
(
2002
).
72.
K. A.
Collins
,
X.
Zhong
,
P.
Song
,
N. R.
Little
,
M. D.
Ward
, and
S. S.
Lee
, “
Electric-field-induced reversible phase transitions in two-dimensional colloidal crystals
,”
Langmuir
31
,
10411
10417
(
2015
).
73.
R. L.
Stoop
and
P.
Tierno
, “
Clogging and jamming of colloidal monolayers driven across disordered landscapes
,”
Commun. Phys.
1
,
68
(
2018
).
74.
M.
Brunner
,
C.
Bechinger
,
U.
Herz
, and
H. H.
von Grünberg
, “
Measuring the equation of state of a hard-disc fluid
,”
Europhys. Lett.
63
,
791
797
(
2003
).
75.
T. R.
Stratton
,
S.
Novikov
,
R.
Qato
,
S.
Villarreal
,
B.
Cui
,
S. A.
Rice
, and
B.
Lin
, “
Structure of quasi-one-dimensional ribbon colloid suspensions
,”
Phys. Rev. E
79
,
031406
(
2009
).
76.
A. L.
Thorneywork
,
R.
Roth
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
, “
Communication: Radial distribution functions in a two-dimensional binary colloidal hard sphere system
,”
J. Chem. Phys.
140
,
161106
(
2014
).
77.
E.
Tamborini
,
C. P.
Royall
, and
P.
Cicuta
, “
Correlation between crystalline order and vitrification in colloidal monolayers
,”
J. Phys.: Condens. Matter
27
,
194124
(
2015
).
78.
I.
Williams
,
E. C.
Oğuz
,
P.
Bartlett
,
H.
Löwen
, and
C. P.
Royall
, “
Flexible confinement leads to multiple relaxation regimes in glassy colloidal liquids
,”
J. Chem. Phys.
142
,
024505
(
2015
).
79.
A. T.
Gray
,
E.
Mould
,
C. P.
Royall
, and
I.
Williams
, “
Structural characterisation of polycrystalline colloidal monolayers in the presence of aspherical impurities
,”
J. Phys.: Condens. Matter
27
,
194108
(
2015
).
80.
I.
Williams
,
F.
Turci
,
J. E.
Hallett
,
P.
Crowther
,
C.
Cammarota
,
G.
Biroli
, and
C. P.
Royall
, “
Experimental determination of configurational entropy in a two-dimensional liquid under random pinning
,”
J. Phys.: Condens. Matter
30
,
094003
(
2018
).
81.
I.
Williams
,
E. C.
Oğuz
,
T.
Speck
,
P.
Bartlett
,
H.
Löwen
, and
C. P.
Royall
, “
Transmission of torque at the nanoscale
,”
Nat. Phys.
12
,
98
103
(
2016
).
82.
A.
Ortiz-Ambriz
,
S.
Gerloff
,
S. H. L.
Klapp
,
J.
Ortín
, and
P.
Tierno
, “
Laning, thinning and thickening of sheared colloids in a two-dimensional Taylor-Couette geometry
,”
Soft Matter
14
,
5121
5129
(
2018
).
83.
S.
Gerloff
,
S. H. L.
Klapp
,
A.
Ortiz-Ambriz
, and
P.
Tierno
, “
Dynamical modes of sheared confined microscale matter
,”
Soft Matter
16
,
9423
9435
(
2020
).
84.
I.
Williams
,
E. C.
Oğuz
,
P.
Bartlett
,
H.
Löwen
, and
C. P.
Royall
, “
Direct measurement of osmotic pressure via adaptive confinement of quasi hard disc colloids
,”
Nat. Commun.
4
,
2555
(
2013
).
85.
J. C.
Crocker
and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
86.
E. M.
Gauger
,
M. T.
Downton
, and
H.
Stark
, “
Fluid transport at low Reynolds number with magnetically actuated artificial cilia
,”
Eur. Phys. J. E
28
,
231
242
(
2009
).
87.
Y.
von Hansen
,
M.
Hinczewski
, and
R. R.
Netz
, “
Hydrodynamic screening near planar boundaries: Effects on semiflexible polymer dynamics
,”
J. Chem. Phys.
134
,
235102
(
2011
).
88.
J. R.
Blake
, “
A note on the image system for a Stokeslet in a no-slip boundary
,”
Proc. Cambridge Philos. Soc.
70
,
303
310
(
1971
).
89.
K.
Ladavac
and
D. G.
Grier
, “
Colloidal hydrodynamic coupling in concentric optical vortices
,”
Europhys. Lett.
70
,
548
554
(
2005
).
90.
E. P.
Bernard
and
W.
Krauth
, “
Two-step melting in two dimensions: First-order liquid-hexatic transition
,”
Phys. Rev. Lett.
107
,
155704
(
2011
).
91.
M.
Fuchs
and
M.
Ballauff
, “
Flow curves of dense colloidal dispersions: Schematic model analysis of the shear-dependent viscosity near the colloidal glass transition
,”
J. Chem. Phys.
122
,
094707
(
2005
).
92.
F.
Varnik
and
O.
Henrich
, “
Yield stress discontinuity in a simple glass
,”
Phys. Rev. B
73
,
174209
(
2006
).
93.
H. M.
Laun
, “
Rheological properties of aqueous polymer dispersions
,”
Angew. Makromol. Chem.
123
,
335
359
(
1984
).
94.
T.
Kawasaki
,
A.
Ikeda
, and
L.
Berthier
, “
Thinning or thickening? Multiple rheological regimes in dense suspensions of soft particles
,”
Europhys. Lett.
107
,
28009
(
2014
).
95.
N. J.
Wagner
and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
(
10
),
27
32
(
2009
).
96.
Y. W.
Kim
and
R. R.
Netz
, “
Electro-osmosis at inhomogeneous charged surfaces: Hydrodynamic versus electric friction
,”
J. Chem. Phys.
124
,
114709
(
2006
).
97.
J.
Rotne
and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
,
4831
4837
(
1969
).
You do not currently have access to this content.