With gates of a quantum computer designed to encode multi-dimensional vectors, projections of quantum computer states onto specific qubit states can produce kernels of reproducing kernel Hilbert spaces. We show that quantum kernels obtained with a fixed ansatz implementable on current quantum computers can be used for accurate regression models of global potential energy surfaces (PESs) for polyatomic molecules. To obtain accurate regression models, we apply Bayesian optimization to maximize marginal likelihood by varying the parameters of the quantum gates. This yields Gaussian process models with quantum kernels. We illustrate the effect of qubit entanglement in the quantum kernels and explore the generalization performance of quantum Gaussian processes by extrapolating global six-dimensional PESs in the energy domain.

1.
J. D.
Whitfield
,
J.
Biamonte
, and
A.
Aspuru-Guzik
, “
Simulation of electronic structure Hamiltonians using quantum computers
,”
Mol. Phys.
109
,
735
(
2011
).
2.
I.
Kassal
,
J. D.
Whitfield
,
A.
Perdomo-Ortiz
,
M.-H.
Yung
, and
A.
Aspuru-Guzik
, “
Simulating chemistry using quantum computers
,”
Annu. Rev. Phys. Chem.
62
,
185
(
2011
).
3.
I. D.
Kivlichan
,
J.
McClean
,
N.
Wiebe
,
C.
Gidney
,
A.
Aspuru-Guzik
,
G. K.-L.
Chan
, and
R.
Babbush
, “
Quantum simulation of electronic structure with linear depth and connectivity
,”
Phys. Rev. Lett.
120
,
110501
(
2018
).
4.
M. B.
Hastings
,
D.
Wecker
,
B.
Bauer
, and
M.
Troyer
, “
Improving quantum algorithms for quantum chemistry
,”
Phys. Rev. A
99
,
032331
(
2019
).
5.
I. G.
Ryabinkin
,
T. C.
Yen
,
S. N.
Genin
, and
A. F.
Izmaylov
, “
Qubit coupled cluster method: A systematic approach to quantum chemistry on a quantum computer
,”
J. Chem. Theory Comput.
14
,
6317
(
2018
).
6.
K.
Setia
and
J. D.
Whitfield
, “
Bravyi-Kitaev superfast simulation of electronic structure on a quantum computer
,”
J. Chem. Phys.
148
,
164104
(
2018
).
7.
R.
Xia
,
T.
Bian
, and
S.
Kais
, “
Electronic structure calculations and the Ising Hamiltonian
,”
J. Phys. Chem. B
122
,
3384
(
2018
).
8.
K.
Sugisaki
,
S.
Yamamoto
,
S.
Nakazawa
,
K.
Toyota
,
K.
Sato
,
D.
Shiomi
, and
T.
Takui
, “
Quantum chemistry on quantum computers: A polynomial-time quantum algorithm for constructing the wave functions of open-shell molecules
,”
J. Phys. Chem. A
120
(
32
),
6459
(
2016
).
9.
S.
Wei
,
H.
Li
, and
G.
Long
, “
A full quantum eigensolver for quantum chemistry simulations
,”
Research
2020
,
1486935
.
10.
T.
Bian
,
D.
Murphy
,
R.
Xia
,
A.
Daskin
, and
S.
Kais
, “
Quantum computing methods for electronic states of the water molecule
,”
Mol. Phys.
117
(
15–16
),
2069
(
2019
).
11.
R.
Babbush
,
N.
Wiebe
,
J.
McClean
,
J.
McClain
,
H.
Neven
, and
G. K.
Chan
, “
Low-depth quantum simulation of materials
,”
Phys. Rev. X
8
,
011044
(
2018
).
12.
N. C.
Rubin
, “
A hybrid classical/quantum approach for large-scale studies of quantum systems with density matrix embedding theory
,” arXiv:1610.06910.
13.
A.
Kandala
,
A.
Mezzacapo
,
K.
Temme
,
M.
Takita
,
M.
Brink
,
J. M.
Chow
, and
J. M.
Gambetta
, “
Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
,”
Nature
549
,
242
(
2017
).
14.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
S.
Boixo
,
M.
Broughton
,
B. B.
Buckley
,
D. A.
Buell
et al, “
Hartree-Fock on a superconducting qubit quantum computer
,”
Science
369
,
1084
(
2020
).
15.
S.
McArdle
,
S.
Endo
,
A.
Aspuru-Guzik
,
S. C.
Benjamin
, and
X.
Yuan
, “
Quantum computational chemistry
,”
Rev. Mod. Phys.
92
,
015003
(
2020
).
16.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
,
S.
Sim
,
L.
Veis
, and
A.
Aspuru-Guzik
, “
Quantum chemistry in the age of quantum computing
,”
Chem. Rev.
119
,
10856
(
2019
).
17.
S. E.
Smart
and
D. A.
Mazziotti
, “
Quantum solver of contracted eigenvalue equations for scalable molecular simulations on quantum computing devices
,”
Phys. Rev. Lett.
126
,
070504
(
2021
).
18.
P. J.
Ollitrault
,
A.
Miessen
, and
I.
Tavernelli
, “
Molecular quantum dynamics: A quantum computing perspective
,”
Acc. Chem. Res.
54
(
23
),
4229
(
2021
).
19.
P. J.
Ollitrault
,
G.
Mazzola
, and
I.
Tavernelli
, “
Nonadiabatic molecular quantum dynamics with quantum computers
,”
Phys. Rev. Lett.
125
,
260511
(
2020
).
20.
R. J.
MacDonell
,
C. E.
Dickerson
,
C. J. T.
Birch
,
A.
Kumar
,
C. L.
Edmunds
,
M. J.
Biercuk
,
C.
Hempel
, and
I.
Kassal
, “
Analog quantum simulation of chemical dynamics
,”
Chem. Sci.
12
,
9794
(
2021
).
21.
I.
Kassal
,
S. P.
Jordan
,
P. J.
Love
,
M.
Mohseni
, and
A.
Aspuru-Guzik
, “
Polynomial-time quantum algorithm for the simulation of chemical dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
18681
(
2008
).
22.
A.
Roggero
,
C.
Gu
,
A.
Baroni
, and
T.
Papenbrock
, “
Preparation of excited states for nuclear dynamics on a quantum computer
,”
Phys. Rev. C
102
,
064624
(
2020
).
23.
E. T.
Holland
,
K. A.
Wendt
,
K.
Kravvaris
,
X.
Wu
,
W. E.
Ormand
,
J.
L DuBois
,
S.
Quaglioni
, and
F.
Pederiva
, “
Optimal control for the quantum simulation of nuclear dynamics
,”
Phys. Rev. A
101
,
062307
(
2020
).
24.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
).
25.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
(
2019
).
26.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
A random-sampling high dimensional model representation neural network for building potential energy surfaces
,”
J. Chem. Phys.
125
,
084109
(
2006
).
27.
S.
Manzhos
,
X.
Wang
,
R.
Dawes
, and
T.
Carrington
, Jr.
, “
A nested molecule-independent neural network approach for high-quality potential fits
,”
J. Phys. Chem. A
110
,
5295
(
2006
).
28.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
29.
J.
Behler
, “
Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
,”
Phys. Chem. Chem. Phys.
13
,
17930
(
2011
).
30.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
(
2015
).
31.
E.
Pradhan
and
A.
Brown
, “
A ground state potential energy surface for HONO based on a neural network with exponential fitting functions
,”
Phys. Chem. Chem. Phys.
19
,
22272
(
2017
).
32.
A.
Leclerc
and
T.
Carrington
, Jr.
, “
Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices
,”
J. Chem. Phys.
140
,
174111
(
2014
).
33.
S.
Manzhos
,
R.
Dawes
, and
T.
Carrington
, Jr.
, “
Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
,”
Int. J. Quantum Chem.
115
,
1012
(
2015
).
34.
J.
Chen
,
X.
Xu
,
X.
Xu
, and
D. H.
Zhang
, “
A global potential energy surface for the H2 + OH ↔ H2O + H reaction using neural networks
,”
J. Chem. Phys.
138
,
154301
(
2013
).
35.
Q.
Liu
,
X.
Zhou
,
L.
Zhou
,
Y.
Zhang
,
X.
Luo
,
H.
Guo
, and
B.
Jiang
, “
Constructing high-dimensional neural network potential energy surfaces for gas-surface scattering and reactions
,”
J. Phys. Chem. C
122
,
1761
(
2018
).
36.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
Neural network potential energy surfaces for small molecules and reactions
,”
Chem. Rev.
121
,
10187
(
2021
).
37.
M.
Meuwly
, “
Machine learning for chemical reactions
,”
Chem. Rev.
121
(
16
),
10218
(
2021
).
38.
C. M.
Handley
,
G. I.
Hawe
,
D. B.
Kell
, and
P. L. A.
Popelier
, “
Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning
,”
Phys. Chem. Chem. Phys.
11
,
6365
(
2009
).
39.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
40.
A. P.
Bartók
and
G.
Csányi
, “
Gaussian approximation potentials: A brief tutorial introduction
,”
Int. J. Quantum Chem.
115
,
1051
(
2015
).
41.
J.
Cui
and
R. V.
Krems
, “
Efficient non-parametric fitting of potential energy surfaces for polyatomic molecules with Gaussian processes
,”
J. Phys. B: At., Mol. Opt. Phys.
49
,
224001
(
2016
).
42.
P. O.
Dral
,
A.
Owens
,
S. N.
Yurchenko
, and
W.
Thiel
, “
Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels
,”
J. Chem. Phys.
146
,
244108
(
2017
).
43.
B.
Kolb
,
P.
Marshall
,
B.
Zhao
,
B.
Jiang
, and
H.
Guo
, “
Representing global reactive potential energy surfaces using Gaussian processes
,”
J. Phys. Chem. A
121
,
2552
(
2017
).
44.
A.
Kamath
,
R. A.
Vargas-Hernández
,
R. V.
Krems
,
T.
Carrington
, Jr.
, and
S.
Manzhos
, “
Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy
,”
J. Chem. Phys.
148
,
241702
(
2018
).
45.
G.
Schmitz
and
O.
Christiansen
, “
Gaussian process regression to accelerate geometry optimizations relying on numerical differentiation
,”
J. Chem. Phys.
148
,
241704
(
2018
).
46.
Y.
Guan
,
S.
Yang
, and
D. H.
Zhang
, “
Construction of reactive potential energy surfaces with Gaussian process regression: Active data selection
,”
Mol. Phys.
116
,
823
(
2018
).
47.
G.
Laude
,
D.
Calderini
,
D. P.
Tew
, and
J. O.
Richardson
, “
Ab initio instanton rate theory made efficient using Gaussian process regression
,”
Faraday Discuss.
212
,
237
(
2018
).
48.
Y.
Guan
,
S.
Yang
, and
D. H.
Zhang
, “
Application of clustering algorithms to partitioning configuration space in fitting reactive potential energy surfaces
,”
J. Phys. Chem. A
122
,
3140
(
2018
).
49.
A. E.
Wiens
,
A. V.
Copan
, and
H. F.
Schaefer
, “
Multi-fidelity Gaussian process modeling for chemical energy surfaces
,”
Chem. Phys. Lett.
737
,
100022
(
2019
).
50.
C.
Qu
,
Q.
Yu
,
B. L.
Van Hoozen
, Jr.
,
J. M.
Bowman
, and
R. A.
Vargas-Hernández
, “
Assessing Gaussian process regression and permutationally invariant polynomial approaches to represent high-dimensional potential energy surfaces
,”
J. Chem. Theory Comput.
14
,
3381
(
2018
).
51.
Q.
Song
,
Q.
Zhang
, and
Q.
Meng
, “
Revisiting the Gaussian process regression for fitting high-dimensional potential energy surface and its application to the OH + HO2 → O2 + H2O reaction
,”
J. Chem. Phys.
152
,
134309
(
2020
).
52.
C.
Qu
,
R.
Conte
,
P. L.
Houston
, and
J. M.
Bowman
, “
Full-dimensional potential energy surface for acetylacetone and tunneling splittings
,”
Phys. Chem. Chem. Phys.
23
,
7758
(
2021
).
53.
O. T.
Unke
and
M.
Meuwly
, “
Toolkit for the construction of reproducing kernel-based representations of data: Application to multidimensional potential energy surfaces
,”
J. Chem. Inf. Model.
57
,
1923
(
2017
).
54.
T. S.
Ho
and
H.
Rabitz
, “
A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations
,”
J. Chem. Phys.
104
,
2584
(
1996
).
55.
T.
Hollebeek
,
T.-S.
Ho
, and
H.
Rabitz
, “
A fast algorithm for evaluating multidimensional potential energy surfaces
,”
J. Chem. Phys.
106
,
7223
(
1997
).
56.
T.-S.
Ho
and
H.
Rabitz
, “
Reproducing kernel Hilbert space interpolation methods as a paradigm of high dimensional model representations: Application to multidimensional potential energy surface construction
,”
J. Chem. Phys.
119
,
6433
(
2003
).
57.
U. T.
Unke
, “
Potential energy surfaces: From force fields to neural networks
,” Ph.D. dissertation (
University of Basel
,
2019
).
58.
Y.
Liu
,
S.
Arunachalam
, and
K.
Temme
, “
A rigorous and robust quantum speed-up in supervised machine learning
,”
Nat. Phys.
17
,
1013
(
2021
).
59.
M.
Schuld
,
A.
Bocharov
,
K. M.
Svore
, and
N.
Wiebe
, “
Circuit-centric quantum classifiers
,”
Phys. Rev. A
101
,
032308
(
2020
).
60.
M.
Benedetti
,
E.
Lloyd
,
S.
Sack
, and
M.
Fiorentini
, “
Parameterized quantum circuits as machine learning models
,”
Quantum Sci. Technol.
4
,
043001
(
2019
).
61.
M.
Schuld
,
I.
Sinayskiy
, and
F.
Petruccione
, “
An introduction to quantum machine learning
,”
Contemp. Phys.
56
,
2
(
2015
).
62.
J.
Biamonte
,
P.
Wittek
,
N.
Pancotti
,
P.
Rebentrost
,
N.
Wiebe
, and
S.
Lloyd
, “
Quantum machine learning
,”
Nature
549
,
195
(
2017
).
63.
M.
Sajjan
,
S. H.
Sureshbabu
, and
S.
Kais
, “
Quantum machine-learning for eigenstate filtration in two-dimensional materials
,”
J. Am. Chem. Soc.
143
(
44
),
18426
(
2021
).
64.
P.
Rebentrost
,
M.
Mohseni
, and
S.
Lloyd
, “
Quantum support vector machine for big data classification
,”
Phys. Rev. Lett.
113
,
130503
(
2014
).
65.
S.
Maria
and
N.
Killoran
, “
Quantum machine learning in feature Hilbert spaces
,”
Phys. Rev. Lett.
122
,
040504
(
2019
).
66.
V.
Havlíček
,
A. D.
Córcoles
,
K.
Temme
,
A. W.
Harrow
,
A.
Kandala
,
J. M.
Chow
, and
J. M.
Gambetta
, “
Supervised learning with quantum-enhanced feature spaces
,”
Nature
567
,
209
(
2019
).
67.
Y.
Suzuki
,
H.
Yano
,
Q.
Gao
,
S.
Uno
,
T.
Tanaka
,
M.
Akiyama
, and
N.
Yamamoto
, “
Analysis and synthesis of feature map for kernel-based quantum classifier
,”
Quantum Mach. Intell.
2
,
9
(
2020
).
68.
J.
Park
,
B.
Quanz
,
S.
Wood
,
H.
Higgins
, and
R.
Harishankar
, “
Practical application improvement to quantum SVM: Theory to practice
,” arXiv:2012.07725.
69.
R.
Chatterjee
and
T.
Yu
, “
Generalized coherent states, reproducing kernels, and quantum support vector machines
,”
Quantum Info. Commun.
17
(
15–16
),
1292
(
2017
).
70.
J. R.
Glick
,
T. P.
Gujarati
,
A. D.
Córcoles
,
Y.
Kim
,
A.
Kandala
,
J. M.
Gambetta
, and
K.
Temme
, “
Covariant quantum kernels for data with group structure
,” arXiv:2105.03406.
71.
M.
Schuld
,
I.
Sinayskiy
, and
F.
Petruccione
, “
Prediction by linear regression on a quantum computer
,”
Phys. Rev. A
94
,
022342
(
2016
).
72.
G.
Wang
, “
Quantum algorithm for linear regression
,”
Phys. Rev. A
96
,
012335
(
2017
).
73.
P.
Date
and
T.
Potok
, “
Adiabatic quantum linear regression
,”
Sci. Rep.
11
,
21905
(
2021
).
74.
N.
Killoran
,
T. R.
Bromley
,
J. M.
Arrazola
,
M.
Schuld
,
N.
Quesada
, and
S.
Lloyd
, “
Continuous-variable quantum neural networks
,”
Phys. Rev. Res.
1
,
033063
(
2019
).
75.
M.
Otten
,
I. R.
Goumiri
,
B. W.
Priest
,
G. F.
Chapline
, and
M. D.
Schneider
, “
Quantum machine learning using Gaussian processes with performant quantum kernels
,” arXiv:2004.11280.
76.
J.
Wang
,
Q.
Chen
, and
Y.
Chen
, “
RBF kernel based support vector machine with universal approximation and its application
,” in
Advances in Neural Networks
, edited by
F.
Yin
,
J.
Wang
, and
C.
Guo
(
Springer
,
Berlin, Heidelberg
,
2004
), pp.
512
517
.
77.
Q.
Yu
and
J. M.
Bowman
, “
Ab initio potential for H3O+ → H+ + H2O: A step to a many-body representation of the hydrated proton?
,”
J. Chem. Theory Comput.
12
,
5284
(
2016
).
78.
J.
Dai
and
R. V.
Krems
, “
Interpolation and extrapolation of global potential energy surfaces for polyatomic systems by Gaussian processes with composite kernels
,”
J. Chem. Theory Comput.
16
,
1386
(
2020
).
79.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
The MIT Press
,
Cambridge
,
2006
).
80.
G.
Aleksandrowicz
,
T.
Alexander
,
P.
Barkoutsos
,
L.
Bello
,
Y.
Ben-Haim
,
D.
Bucher
,
F. J.
Cabrera-Hernández
,
J.
Carballo-Franquis
,
A.
Chen
,
C.
Chen
et al, “
Qiskit: An open-source framework for quantum computing
,” available at https://doi.org/10.5281/zenodo.2573505.
81.
K.
Asnaashari
and
R. V.
Krems
, “
Gradient domain machine learning with composite kernels: Improving the accuracy of PES and force fields for large molecules
,”
Mach. Learn.: Sci. Technol.
3
,
015005
(
2022
).
82.
R. A.
Vargas-Hernández
,
Y.
Guan
,
D. H.
Zhang
, and
R. V.
Krems
, “
Bayesian optimization for the inverse scattering problem in quantum reaction dynamics
,”
New J. Phys.
21
,
022001
(
2019
).
83.
G.
Schwarz
, “
Estimating the dimension of a model
,”
Ann. Stat.
2
,
461
(
1978
).
84.
D. K.
Duvenaud
,
H.
Nickisch
, and
C. E.
Rasmussen
, “
Additive Gaussian processes
,” in
Advances in Neural Information Processing Systems
(
NIPS
,
2011
), Vol. 24, p.
226
.
85.
D. K.
Duvenaud
,
J.
Lloyd
,
R.
Grosse
,
J. B.
Tenenbaum
, and
Z.
Ghahramani
, “
Structure discovery in nonparametric regression through compositional kernel search
,” in
Proceedings of the 30th International Conference on Machine Learning Research
(
PMLR
,
2013
), Vol. 28, p.
1166
.
86.
R. A.
Vargas-Hernández
,
J.
Sous
,
M.
Berciu
, and
R. V.
Krems
, “
Extrapolating quantum observables with machine learning: Inferring multiple phase transitions from properties of a single phase
,”
Phys. Rev. Lett.
121
,
255702
(
2018
).
87.
H.
Sugisawa
,
T.
Ida
, and
R. V.
Krems
, “
Gaussian process model of 51-dimensional potential energy surface for protonated imidazole dimer
,”
J. Chem. Phys.
153
,
114101
(
2020
).
88.
J.
Chow
,
O.
Dial
, and
J.
Gambetta
, IBM Quantum breaks the 100-qubit processor barrier, https://research.ibm.com/blog/127-qubit-quantum-processor-eagle.
You do not currently have access to this content.