We recently proposed effective normal modes for excitonically coupled aggregates that exactly transform the energy transfer Hamiltonian into a sum of one-dimensional Hamiltonians along the effective normal modes. Identifying physically meaningful vibrational motions that maximally promote vibronic mixing suggested an interesting possibility of leveraging vibrational-electronic resonance for mediating selective energy transfer. Here, we expand on the effective mode approach, elucidating its iterative nature for successively larger aggregates, and extend the idea of mediated energy transfer to larger aggregates. We show that energy transfer between electronically uncoupled but vibronically resonant donor–acceptor sites does not depend on the intermediate site energy or the number of intermediate sites. The intermediate sites simply mediate electronic coupling such that vibronic coupling along specific promoter modes leads to direct donor–acceptor energy transfer, bypassing any intermediate uphill energy transfer steps. We show that the interplay between the electronic Hamiltonian and the effective mode transformation partitions the linear vibronic coupling along specific promoter modes to dictate the selectivity of mediated energy transfer with a vital role of interference between vibronic couplings and multi-particle basis states. Our results suggest a general design principle for enhancing energy transfer through synergistic effects of vibronic resonance and weak mediated electronic coupling, where both effects individually do not promote efficient energy transfer. The effective mode approach proposed here paves a facile route toward four-wavemixing spectroscopy simulations of larger aggregates without severely approximating resonant vibronic coupling.

1.
D. M.
Jonas
, “
Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer
,”
Annu. Rev. Phys. Chem.
69
(
1
),
327
352
(
2018
).
2.
D.
Polli
,
P.
Altoè
,
O.
Weingart
,
K. M.
Spillane
,
C.
Manzoni
,
D.
Brida
,
G.
Tomasello
,
G.
Orlandi
,
P.
Kukura
,
R. A.
Mathies
,
M.
Garavelli
, and
G.
Cerullo
, “
Conical intersection dynamics of the primary photoisomerization event in vision
,”
Nature
467
(
7314
),
440
443
(
2010
).
3.
D.
Nicoletti
and
A.
Cavalleri
, “
Nonlinear light–matter interaction at terahertz frequencies
,”
Adv. Opt. Photonics
8
(
3
),
401
464
(
2016
).
4.
B. C.
Paulus
,
S. L.
Adelman
,
L. L.
Jamula
, and
J. K.
McCusker
, “
Leveraging excited-state coherence for synthetic control of ultrafast dynamics
,”
Nature
582
(
7811
),
214
218
(
2020
).
5.
A. S.
Rury
,
S. A.
Sorenson
, and
J. M.
Dawlaty
, “
Evidence of ultrafast charge transfer driven by coherent lattice vibrations
,”
J. Phys. Chem. Lett.
8
(
1
),
181
187
(
2017
).
6.
C. C.
Rich
and
R. R.
Frontiera
, “
Uncovering the functional role of coherent phonons during the photoinduced phase transition in a molecular crystal
,”
J. Phys. Chem. Lett.
11
(
18
),
7502
7509
(
2020
).
7.
R.
Long
and
O. V.
Prezhdo
, “
Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction
,”
Nano Lett.
16
(
3
),
1996
2003
(
2016
).
8.
M.
Delor
,
P. A.
Scattergood
,
I. V.
Sazanovich
,
A. W.
Parker
,
G. M.
Greetham
,
A. J. H. M.
Meijer
,
M.
Towrie
, and
J. A.
Weinstein
, “
Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation
,”
Science
346
(
6216
),
1492
1495
(
2014
).
9.
S.
Kundu
and
N.
Makri
, “
Intramolecular vibrations in excitation energy transfer: Insights from real-time path integral calculations
,”
Annu. Rev. Phys. Chem.
73
(
1
),
349
375
(
2022
).
10.
L. S.
Cederbaum
,
E.
Gindensperger
, and
I.
Burghardt
, “
Short-time dynamics through conical intersections in macrosystems
,”
Phys. Rev. Lett.
94
(
11
),
113003
(
2005
).
11.
W.
Popp
,
M.
Polkehn
,
K. H.
Hughes
,
R.
Martinazzo
, and
I.
Burghardt
, “
Vibronic coupling models for donor-acceptor aggregates using an effective-mode scheme: Application to mixed Frenkel and charge-transfer excitons in oligothiophene aggregates
,”
J. Chem. Phys.
150
(
24
),
244114
(
2019
).
12.
E.
Bašinskaitė
,
V.
Butkus
,
D.
Abramavicius
, and
L.
Valkunas
, “
Vibronic models for nonlinear spectroscopy simulations
,”
Photosynth. Res.
121
(
1
),
95
106
(
2014
).
13.
M.
Schröter
,
S. D.
Ivanov
,
J.
Schulze
,
S. P.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
, “
Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates
,”
Phys. Rep.
567
,
1
78
(
2015
).
14.
J.
Seibt
,
V.
Sláma
, and
T.
Mančal
, “
Optical spectroscopy and system–bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model
,”
Chem. Phys.
481
,
218
230
(
2016
).
15.
K. A.
Kitney-Hayes
,
A. A.
Ferro
,
V.
Tiwari
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy at a conical intersection
,”
J. Chem. Phys.
140
(
12
),
124312
(
2014
).
16.
M. R.
Philpott
, “
Theory of the vibrational structure of molecular excitons. Soluble one-‘phonon’ models
,”
J. Chem. Phys.
51
(
6
),
2616
2624
(
1969
).
17.
J. S.
Briggs
and
A.
Herzenberg
, “
Sum rules for the vibronic spectra of helical polymers
,”
J. Phys. B: At. Mol. Phys.
3
(
12
),
1663
1676
(
1970
).
18.
J.
Roden
,
A.
Eisfeld
, and
J. S.
Briggs
, “
The J- and H-bands of dye aggregate spectra: Analysis of the coherent exciton scattering (CES) approximation
,”
Chem. Phys.
352
(
1
),
258
266
(
2008
).
19.
N. J.
Hestand
and
F. C.
Spano
, “
Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer
,”
Chem. Rev.
118
(
15
),
7069
7163
(
2018
).
20.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
4
),
1203
1208
(
2013
).
21.
A.
Witkowski
and
W.
Moffitt
, “
Electronic spectra of dimers: Derivation of the fundamental vibronic equation
,”
J. Chem. Phys.
33
(
3
),
872
875
(
1960
).
22.
R. L.
Fulton
and
M.
Gouterman
, “
Vibronic coupling. I. Mathematical treatment for two electronic states
,”
J. Chem. Phys.
35
(
3
),
1059
1071
(
1961
).
23.
T.
Förster
, in
Modern Quantum Chemistry
, edited by
O.
Sinanoğlu
(
Academic Press
, New York,
1965
).
24.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer
,”
J. Chem. Phys.
147
(
15
),
154308
(
2017
).
25.
W. K.
Peters
,
V.
Tiwari
, and
D. M.
Jonas
, “
Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer
,”
J. Chem. Phys.
147
(
19
),
194306
(
2017
).
26.
M.
Baer
, in
Beyond Born–Oppenheimer Approximation: Electronic Nonadiabatic Coupling Terms and Conical Intersections
(
Wiley-Interscience
,
2006
), Chap. 5.
27.
S.
Patra
,
A.
Sahu
, and
V.
Tiwari
, “
Effective normal modes identify vibrational motions which maximally promote vibronic mixing in excitonically coupled aggregates
,”
J. Chem. Phys.
154
(
11
),
111106
(
2021
).
28.
A. A.
Bakulin
,
S. E.
Morgan
,
T. B.
Kehoe
,
M. W. B.
Wilson
,
A. W.
Chin
,
D.
Zigmantas
,
D.
Egorova
, and
A.
Rao
, “
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
,”
Nat. Chem.
8
,
16
23
(
2016
).
29.
A. A.
Mohapatra
,
V.
Tiwari
, and
S.
Patil
, “
Energy transfer in ternary blend organic solar cells: Recent insights and future directions
,”
Energy Environ. Sci.
14
(
1
),
302
319
(
2021
).
30.
E. I.
Rashba
, “
Theory of vibronic spectra of molecular crystals
,”
J. Expt. Theor. Phys.
(U.S.S.R.)
50
,
1064
1080
(
1966
).
31.
J. S.
Briggs
and
A.
Herzenberg
, “
The absorption bandshape of a molecular dimer
,”
Mol. Phys.
23
(
1
),
203
208
(
1972
).
32.
A.
Eisfeld
,
L.
Braun
,
W. T.
Strunz
,
J. S.
Briggs
,
J.
Beck
, and
V.
Engel
, “
Vibronic energies and spectra of molecular dimers
,”
J. Chem. Phys.
122
(
13
),
134103
(
2005
).
33.
J.
Roden
,
G.
Schulz
,
A.
Eisfeld
, and
J.
Briggs
, “
Electronic energy transfer on a vibronically coupled quantum aggregate
,”
J. Chem. Phys.
131
(
4
),
044909
(
2009
).
34.
J. M.
Womick
and
A. M.
Moran
, “
Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes
,”
J. Phys. Chem. B
115
,
1347
1356
(
2011
).
35.
N.
Christensson
,
H. F.
Kauffmann
,
T.
Pullerits
, and
T.
Mančal
, “
Origin of long lived coherences in light-harvesting complexes
,”
J. Phys. Chem. B
116
,
7449
7454
(
2012
).
36.
P.
Nalbach
,
C. A.
Mujica-Martinez
, and
M.
Thorwart
, “
Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex
,”
Phys. Rev. E
91
(
2
),
22706
(
2015
).
37.
J. C.
Dean
,
T.
Mirkovic
,
Z. S. D.
Toa
,
D. G.
Oblinsky
, and
G. D.
Scholes
, “
Vibronic enhancement of algae light harvesting
,”
Chem
1
(
6
),
858
872
(
2014
).
38.
P.
Bhattacharyya
and
G. R.
Fleming
, “
The role of resonant nuclear modes in vibrationally assisted energy transport: The LHCII complex
,”
J. Chem. Phys.
153
(
4
),
044119
(
2020
).
39.
G. D.
Scholes
,
G. R.
Fleming
,
L. X.
Chen
,
A.
Aspuru-Guzik
,
A.
Buchleitner
,
D. F.
Coker
,
G. S.
Engel
,
R.
van Grondelle
,
A.
Ishizaki
,
D. M.
Jonas
,
J. S.
Lundeen
,
J. K.
McCusker
,
S.
Mukamel
,
J. P.
Ogilvie
,
A.
Olaya-Castro
,
M. A.
Ratner
,
F. C.
Spano
,
K. B.
Whaley
, and
X.
Zhu
, “
Using coherence to enhance function in chemical and biophysical systems
,”
Nature
543
,
647
656
(
2017
).
40.
A.
Sahu
,
J. S.
Kurian
, and
V.
Tiwari
, “
Vibronic resonance is inadequately described by one-particle basis sets
,”
J. Chem. Phys.
153
(
22
),
224114
(
2020
).
41.
V.
Tiwari
and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer
,”
J. Chem. Phys.
148
(
8
),
084308
(
2018
).
42.
P.
Kukura
,
D. W.
McCamant
,
S.
Yoon
,
D. B.
Wandschneider
, and
R. A.
Mathies
, “
Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman
,”
Science
310
(
5750
),
1006
1009
(
2005
).
43.
M.
Herman
and
D. S.
Perry
, “
Molecular spectroscopy and dynamics: A polyad-based perspective
,”
Phys. Chem. Chem. Phys.
15
(
25
),
9970
9993
(
2013
).
44.
E.
Sebastian
and
M.
Hariharan
, “
Null exciton-coupled chromophoric dimer exhibits symmetry-breaking charge separation
,”
J. Am. Chem. Soc.
143
(
34
),
13769
13781
(
2021
).
45.
M. B.
Smith
and
J.
Michl
, “
Recent advances in singlet fission
,”
Annu. Rev. Phys. Chem.
64
(
1
),
361
386
(
2013
).
46.
P.
Bhattacharyya
and
G. R.
Fleming
, “
Quantum ratcheted photophysics in energy transport
,”
J. Phys. Chem. Lett.
11
,
8337
(
2020
).
47.
M.
Anzola
,
F.
Di Maiolo
, and
A.
Painelli
, “
Optical spectra of molecular aggregates and crystals: Testing approximation schemes
,”
Phys. Chem. Chem. Phys.
21
(
36
),
19816
19824
(
2019
).
48.
R.
Tempelaar
and
D. R.
Reichman
, “
Vibronic exciton theory of singlet fission. II. Two-dimensional spectroscopic detection of the correlated triplet pair state
,”
J. Chem. Phys.
146
(
17
),
174704
(
2017
).
49.
S.
Kundu
and
N.
Makri
, “
Real-time path integral simulation of exciton-vibration dynamics in light-harvesting bacteriochlorophyll aggregates
,”
J. Phys. Chem. Lett.
11
(
20
),
8783
8789
(
2020
).
50.
P. P.
Roy
,
S.
Kundu
,
J.
Valdiviezo
,
G.
Bullard
,
J. T.
Fletcher
,
R.
Liu
,
S.-J.
Yang
,
P.
Zhang
,
D. N.
Beratan
,
M. J.
Therien
,
N.
Makri
, and
G. R.
Fleming
, “
Synthetic control of exciton dynamics in bioinspired cofacial porphyrin dimers
,”
J. Am. Chem. Soc.
144
,
6298
(
2022
).
51.
J. D.
Gaynor
,
J.
Sandwisch
, and
M.
Khalil
, “
Vibronic coherence evolution in multidimensional ultrafast photochemical processes
,”
Nat. Commun.
10
(
1
),
5621
(
2019
).
52.
A.
De Sio
and
C.
Lienau
, “
Vibronic coupling in organic semiconductors for photovoltaics
,”
Phys. Chem. Chem. Phys.
19
(
29
),
18813
18830
(
2017
).
53.
V. R.
Policht
,
A.
Niedringhaus
,
R.
Willow
,
P. D.
Laible
,
D. F.
Bocian
,
C.
Kirmaier
,
D.
Holten
,
T.
Mančal
, and
J. P.
Ogilvie
, “
Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center
,”
Sci. Adv.
8
(
1
),
eabk0953
(
2022
).
54.
D.
Paleček
,
P.
Edlund
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center
,”
Sci. Adv.
3
(
9
),
e1603141
(
2017
).

Supplementary Material

You do not currently have access to this content.