A natural range separation of the Coulomb hole into two components, one of them being predominant at long interelectronic separations (hcI) and the other at short distances (hcII), is exhaustively analyzed throughout various examples that put forward the most relevant features of this approach and how they can be used to develop efficient ways to capture electron correlation. We show that hcI, which only depends on the first-order reduced density matrix, can be used to identify molecules with a predominant nondynamic correlation regime and differentiate between two types of nondynamic correlation, types A and B. Through the asymptotic properties of the hole components, we explain how hcI can retrieve the long-range part of electron correlation. We perform an exhaustive analysis of the hydrogen molecule in a minimal basis set, dissecting the hole contributions into spin components. We also analyze the simplest molecule presenting a dispersion interaction and how hcII helps identify it. The study of several atoms in different spin states reveals that the Coulomb hole components distinguish correlation regimes that are not apparent from the entire hole. The results of this work hold out the promise to aid in developing new electronic structure methods that efficiently capture electron correlation.

1.
P.-O.
Löwdin
, “
Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction
,”
Phys. Rev.
97
,
1474
1489
(
1955
).
2.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advances Electronic Structure Theory
(
Courier Corporation
,
New York
,
2012
).
3.
S.
Wilson
,
Electron Correlation in Molecules
(
Dover
,
New York
,
2007
).
4.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
, “
Explicitly correlated electrons in molecules
,”
Chem. Rev.
112
,
4
74
(
2012
).
5.
D. P.
Tew
,
W.
Klopper
, and
T.
Helgaker
, “
Electron correlation: The many-body problem at the heart of chemistry
,”
J. Comput. Chem.
28
,
1307
1320
(
2007
).
6.
D.
Cremer
, “
Density functional theory: Coverage of dynamic and non-dynamic electron correlation effects
,”
Mol. Phys.
99
,
1899
1940
(
2001
).
7.
P.
Ziesche
, “
On relations between correlation, fluctuation and localization
,”
J. Mol. Struct.: THEOCHEM
527
,
35
50
(
2000
).
8.
A.
Raeber
and
D. A.
Mazziotti
, “
Large eigenvalue of the cumulant part of the two-electron reduced density matrix as a measure of off-diagonal long-range order
,”
Phys. Rev. A
92
,
052502
(
2015
).
9.
C. L.
Benavides-Riveros
,
N. N.
Lathiotakis
,
C.
Schilling
, and
M. A.
Marques
, “
Relating correlation measures: The importance of the energy gap
,”
Phys. Rev. A
95
,
032507
(
2017
).
10.
A. D.
Gottlieb
and
N. J.
Mauser
, “
New measure of electron correlation
,”
Phys. Rev. Lett.
95
,
123003
(
2005
).
11.
J. W.
Hollett
and
P. M. W.
Gill
, “
The two faces of static correlation
,”
J. Chem. Phys.
134
,
114111
(
2011
).
12.
U. R.
Fogueri
,
S.
Kozuch
,
A.
Karton
, and
J. M. L.
Martin
, “
A simple DFT-based diagnostic for nondynamical correlation
,”
Theor. Chem. Acc.
132
,
1291
(
2013
).
13.
E.
Proynov
,
F.
Liu
, and
J.
Kong
, “
Analyzing effects of strong electron correlation within Kohn-Sham density-functional theory
,”
Phys. Rev. A
88
,
049903
(
2013
).
14.
J.
Cioslowski
, “
Density-driven self-consistent-field method: Density-constrained correlation energies in the helium series
,”
Phys. Rev. A
43
,
1223
1228
(
1991
).
15.
E.
Valderrama
,
E. V.
Ludeña
, and
J.
Hinze
, “
Analysis of dynamical and nondynamical components of electron correlation energy by means of local-scaling density-functional theory
,”
J. Chem. Phys.
106
,
9227
9235
(
1997
).
16.
E.
Valderrama
,
E. V.
Ludeña
, and
J.
Hinze
, “
Assessment of dynamical and nondynamical correlation energy components for the beryllium-atom isoelectronic sequence
,”
J. Chem. Phys.
110
,
2343
2353
(
1999
).
17.
D. K. W.
Mok
,
R.
Neumann
, and
N. C.
Handy
, “
Dynamic and nondynamic correlation
,”
J. Phys. Chem.
100
,
6225
6230
(
1996
).
18.
C. L.
Benavides-Riveros
,
N. N.
Lathiotakis
, and
M. A. L.
Marques
, “
Towards a formal definition of static and dynamic electronic correlations
,”
Phys. Chem. Chem. Phys.
19
,
12655
12664
(
2017
).
19.
S.
Vuckovic
,
T. J. P.
Irons
,
L. O.
Wagner
,
A. M.
Teale
, and
P.
Gori-Giorgi
, “
Interpolated energy densities, correlation indicators and lower bounds from approximations to the strong coupling limit of DFT
,”
Phys. Chem. Chem. Phys.
19
,
6169
6183
(
2017
).
20.
E.
Ramos-Cordoba
,
P.
Salvador
, and
E.
Matito
, “
Separation of dynamic and nondynamic correlation
,”
Phys. Chem. Chem. Phys.
18
,
24015
24023
(
2016
).
21.
E.
Ramos-Cordoba
and
E.
Matito
, “
Local descriptors of dynamic and nondynamic correlation
,”
J. Chem. Theory Comput.
13
,
2705
2711
(
2017
).
22.
M.
Via-Nadal
,
M.
Rodríguez-Mayorga
,
E.
Ramos-Cordoba
, and
E.
Matito
, “
Singling out dynamic and nondynamic correlation
,”
J. Phys. Chem. Lett.
10
,
4032
4037
(
2019
).
23.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
24.
O.
Sinanoğlu
, “
Many-electron theory of atoms, molecules and their interactions
,”
Adv. Chem. Phys.
6
,
315
412
(
1964
).
25.
A. J.
Stone
,
The Theory of Intermolecular Forces
, 2nd ed. (
Oxford University Press
,
2013
).
26.
I.
Shavitt
, “
The method of configuration interaction
,” in
Methods of Electronic Structure Theory
(
Springer
,
1977
), pp.
189
275
.
27.
J.
Čížek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,”
J. Phys. Chem.
45
,
4256
4266
(
1966
).
28.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
(
1934
).
29.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
30.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons, Ltd.
,
Chichester
,
2000
).
31.
B. O.
Roos
, “
The complete active space self-consistent field method and its applications in electronic structure calculations
,”
Adv. Chem. Phys.
69
,
399
445
(
1987
).
32.
S. R.
White
and
D. A.
Huse
, “
Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain
,”
Phys. Rev. B
48
,
3844
(
1993
).
33.
J.
Frenkel
,
Wave Mechanics, Volume 2: Advanced General Theory
(
Clarendon Press
,
Oxford
,
1934
), pp.
460
462
.
34.
B. O.
Roos
and
P.
Siegbahn
,
Methods of Electronic Structure Theory
, edited by
F.
Schaefer
 III
(
Plenum Press
,
New York
,
1977
).
35.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
5488
(
1990
).
36.
K.
Andersson
,
P. Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
37.
R. J.
Buenker
and
S. D.
Peyerimhoff
, “
Individualized configuration selection in CI calculations with subsequent energy extrapolation
,”
Theor. Chim. Acta
35
,
33
58
(
1974
).
38.
H. J.
Werner
and
P. J.
Knowles
, “
An efficient internally contracted multiconfiguration–reference configuration interaction method
,”
J. Chem. Phys.
89
,
5803
5814
(
1988
).
39.
E.
Pastorczak
,
M.
Hapka
,
L.
Veis
, and
K.
Pernal
, “
Capturing the dynamic correlation for arbitrary spin-symmetry CASSCF reference with adiabatic connection approaches: Insights into the electronic structure of the tetramethyleneethane diradical
,”
J. Phys. Chem. Lett.
10
,
4668
4674
(
2019
).
40.
J. W.
Hollett
and
P.-F.
Loos
, “
Capturing static and dynamic correlation with ΔNO-MP2 and ΔNO-CCSD
,”
J. Chem. Phys.
152
,
014101
(
2020
).
41.
M.
Piris
, “
Global natural orbital functional: Towards the complete description of the electron correlation
,”
Phys. Rev. Lett.
127
,
233001
(
2021
).
42.
A.
Savin
, “
On degeneracy, near-degeneracy and density functional theory
,” in
Recent Developments of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), p.
327
.
43.
A.
Savin
, “
A combined density functional and configuration interaction method
,”
Int. J. Quantum Chem.
34
,
59
69
(
1988
).
44.
E.
Fromager
,
J.
Toulouse
, and
H. J. A.
Jensen
, “
On the universality of the long-/short-range separation in multiconfigurational density-functional theory
,”
J. Chem. Phys.
126
,
074111
(
2007
).
45.
J.
Toulouse
,
I. C.
Gerber
,
G.
Jansen
,
A.
Savin
, and
J. G.
Angyán
, “
Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation
,”
Phys. Rev. Lett.
102
,
096404
(
2009
).
46.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
, “
Long-range–short-range separation of the electron-electron interaction in density-functional theory
,”
Phys. Rev. A
70
,
062505
(
2004
).
47.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
, “
A long-range correction scheme for generalized-gradient-approximation exchange functionals
,”
J. Chem. Phys.
115
,
3540
3544
(
2001
).
48.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
, “
Tuned range-separated hybrids in density functional theory
,”
Annu. Rev. Phys. Chem.
61
,
85
109
(
2010
).
49.
K.
Garrett
,
X.
Sosa Vazquez
,
S. B.
Egri
,
J.
Wilmer
,
L. E.
Johnson
,
B. H.
Robinson
, and
C. M.
Isborn
, “
Optimum exchange for calculation of excitation energies and hyperpolarizabilities of organic electro-optic chromophores
,”
J. Chem. Theory Comput.
10
,
3821
3831
(
2014
).
50.
J. J.
Bao
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Multiconfiguration pair-density functional theory for doublet excitation energies and excited state geometries: The excited states of CN
,”
Phys. Chem. Chem. Phys.
19
,
30089
30096
(
2017
).
51.
L.
Gagliardi
,
D. G.
Truhlar
,
G.
Li Manni
,
R. K.
Carlson
,
C. E.
Hoyer
, and
J. L.
Bao
, “
Multiconfiguration pair-density functional theory: A new way to treat strongly correlated systems
,”
Acc. Chem. Res.
50
,
66
73
(
2017
).
52.
G.
Li Manni
,
R. K.
Carlson
,
S.
Luo
,
D.
Ma
,
J.
Olsen
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Multiconfiguration pair-density functional theory
,”
J. Chem. Theory Comput.
10
,
3669
3680
(
2014
).
53.
C.
Duan
,
F.
Liu
,
A.
Nandy
, and
H. J.
Kulik
, “
Data-driven approaches can overcome the cost–accuracy trade-off in multireference diagnostics
,”
J. Chem. Theory Comput.
16
,
4373
4387
(
2020
).
54.
C.
Duan
,
F.
Liu
,
A.
Nandy
, and
H. J.
Kulik
, “
Semi-supervised machine learning enables the robust detection of multireference character at low cost
,”
J. Phys. Chem. Lett.
11
,
6640
6648
(
2020
).
55.
A. J.
Coleman
, “
Density matrices in the quantum theory of matter: Energy, intracules and extracules
,”
Int. J. Quantum Chem.
1
,
457
464
(
1967
).
56.
M.
Piris
and
J. M.
Ugalde
, “
Perspective on natural orbital functional theory
,”
Int. J. Quantum Chem.
114
,
1169
1175
(
2014
).
57.
K.
Pernal
and
K. J. H.
Giesbertz
, “
Reduced density matrix functional theory (RDMFT) and linear response time-dependent RDMFT (TD-RDMFT)
,”
Top. Curr. Chem.
368
,
125
183
(
2015
).
58.
E.
Ramos-Cordoba
,
X.
Lopez
,
M.
Piris
, and
E.
Matito
, “
H4: A challenging system for natural orbital functional approximations
,”
J. Chem. Phys.
143
,
164112
(
2015
).
59.
E.
Ramos-Cordoba
,
P.
Salvador
,
M.
Piris
, and
E.
Matito
, “
Two new constraints for the cumulant matrix
,”
J. Chem. Phys.
141
,
234101
(
2014
).
60.
J.
Cioslowski
,
M.
Piris
, and
E.
Matito
, “
Robust validation of approximate 1-matrix functionals with few-electron harmonium atoms
,”
J. Chem. Phys.
143
,
214101
(
2015
).
61.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
, 2nd ed. (
Academic Press
,
London
,
1989
).
62.
M.
Rodríguez-Mayorga
,
M.
Via-Nadal
,
M.
Solà
,
J. M.
Ugalde
,
X.
Lopez
, and
E.
Matito
, “
Electron-pair distribution in chemical bond formation
,”
J. Phys. Chem. A
122
,
1916
1923
(
2018
).
63.
C.
Sarasola
,
J. M.
Ugalde
, and
R. J.
Boyd
, “
The evaluation of extracule and intracule densities in the first-row hydrides, LiH, BeH, BH, CH, NH, OH and FH, from self-consistent field molecular orbital wavefunctions
,”
J. Phys. B: At., Mol. Opt. Phys.
23
,
1095
(
1990
).
64.
C.
Sarasola
,
L.
Dominguez
,
M.
Aguado
, and
J. M.
Ugalde
, “
The Laplacian of the intracule and extracule densities and their relationship to the shell structure of atoms
,”
J. Chem. Phys.
96
,
6778
6783
(
1992
).
65.
J. M.
Mercero
,
M.
Rodríguez-Mayorga
,
E.
Matito
,
X.
Lopez
, and
J. M.
Ugalde
, “
The electron-pair density distribution of the 1,3πu excited states of H2
,”
Can. J. Chem.
94
,
998
1001
(
2016
).
66.
M.
Rodríguez-Mayorga
,
E.
Ramos-Cordoba
,
X.
Lopez
,
M.
Solà
,
J. M.
Ugalde
, and
E.
Matito
, “
The Coulomb hole of the Ne atom
,”
ChemistryOpen
8
,
411
417
(
2019
).
67.
A. J.
Thakkar
and
V. H.
Smith
, Jr.
, “
Form factors and total scattering intensities for the helium-like ions from explicitly correlated wavefunctions
,”
J. Phys. B: At., Mol. Opt. Phys.
11
,
3803
(
1978
).
68.
A. J.
Thakkar
,
A. N.
Tripathi
, and
V. H.
Smith
, “
Anisotropic electronic intracule densities for diatomics
,”
Int. J. Quantum Chem.
26
,
157
166
(
1984
).
69.
A. J.
Thakkar
,
A. N.
Tripathi
, and
V. H.
Smith
, Jr.
, “
Molecular x-ray and electron-scattering intensities
,”
Phys. Rev. A
29
,
1108
(
1984
).
70.
E.
Valderrama
,
X.
Fradera
, and
J. M.
Ugalde
, “
Determination of the integrated x-ray scattering intensities through the electron-pair relative-motion density at the origin
,”
Phys. Rev. A
64
,
044501
(
2001
).
71.
C. A.
Coulson
, “
Present state of molecular structure calculations
,”
Rev. Mod. Phys.
32
,
170
177
(
1960
).
72.
C. A.
Coulson
and
A. H.
Neilson
, “
Electron correlation in the ground state of helium
,”
Proc. Phys. Soc., London
78
,
831
837
(
1961
).
73.
R. J.
Boyd
and
C. A.
Coulson
, “
Coulomb hole in some excited states of helium
,”
J. Phys. B: At., Mol. Opt. Phys.
6
,
782
793
(
1973
).
74.
E.
Valderrama
,
J.
Ugalde
, and
R.
Boyd
,
Many Electron Densities and Reduced Density Matrices
, edited by
J.
Cioslowsky
, (
Kluwer Academic/Plenum Publishers
,
New York, NY
,
2000
), pp.
231
248
.
75.
M.
Rodríguez-Mayorga
,
E.
Ramos-Cordoba
,
M.
Via-Nadal
,
M.
Piris
, and
E.
Matito
, “
Comprehensive benchmarking of density matrix functional approximations
,”
Phys. Chem. Chem. Phys.
19
,
24029
24041
(
2017
).
76.
M.
Via-Nadal
,
M.
Rodríguez-Mayorga
, and
E.
Matito
, “
A salient signature of van der Waals interactions
,”
Phys. Rev. A
96
,
050501
(
2017
).
77.
A. J.
Coleman
and
V. I.
Yukalov
,
Reduced Density Matrices: Coulson’s Challenge
(
Springer-Verlag
,
Berlin
,
2000
), Vol. 72.
78.
A. J.
Coleman
, “
Structure of fermion density matrices
,”
Rev. Mod. Phys.
35
,
668
687
(
1963
).
79.
D. A.
Mazziotti
, “
Structure of fermionic density matrices: Complete N-representability conditions
,”
Phys. Rev. Lett.
108
,
263002
(
2012
).
80.
M.
Rodríguez-Mayorga
,
E.
Ramos-Cordoba
,
F.
Feixas
, and
E.
Matito
, “
Electron correlation effects in third-order densities
,”
Phys. Chem. Chem. Phys.
19
,
4522
4529
(
2017
).
81.
P. W.
Ayers
and
E. R.
Davidson
, “
Linear inequalities for diagonal elements of density matrices
,”
Adv. Chem. Phys.
134
,
443
483
(
2007
).
82.
F.
Feixas
,
M.
Solà
,
J. M.
Barroso
,
J. M.
Ugalde
, and
E.
Matito
, “
New approximation to the third-order density. Application to the calculation of correlated multicenter indices
,”
J. Chem. Theory Comput.
10
,
3055
3065
(
2014
).
83.
E. H.
Lieb
, “
Variational principle for many-fermion systems
,”
Phys. Rev. Lett.
46
,
457
(
1981
).
84.
M.
Levy
, “
Correlation energy functionals of one-matrices and Hartree-Fock densities
,” in
Density Matrices and Density Functionals
(
Springer
,
1987
), pp.
479
498
.
85.
M. A.
Buijse
, “
Electron correlation. Fermi and Coulomb holes, dynamical and nondynamical correlation
,” Ph.D. thesis,
Vrije Universiteit
,
Amsterdam, The Netherlands
,
1991
.
86.
W.
Kutzelnigg
and
D.
Mukherjee
, “
Cumulant expansion of the reduced density matrices
,”
J. Chem. Phys.
110
,
2800
2809
(
1999
).
87.
D. A.
Mazziotti
, “
Approximate solution for electron correlation through the use of Schwinger probes
,”
Chem. Phys. Lett.
289
,
419
427
(
1998
).
88.
N. H.
March
and
R.
Pucci
, “
Asymptotic form of first-order density matrix for atoms and molecules
,”
J. Chem. Phys.
75
,
496
497
(
1981
).
89.

A remarkable exception to this rule occurs in molecules that HF dissociates into fragments with the wrong number of electrons. See the last two examples given in this paper.

90.
P. J.
Knowles
and
N. C.
Handy
, “
A determinant based full configuration interaction program
,”
Comput. Phys. Commun.
54
,
75
(
1989
).
91.
E.
Matito
,
J.
Cioslowski
, and
S. F.
Vyboishchikov
, “
Properties of harmonium atoms from FCI calculations: Calibration and benchmarks for the ground state of the two-electron species
,”
Phys. Chem. Chem. Phys.
12
,
6712
6716
(
2010
).
92.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wavefunctions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
93.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
94.
E.
Matito
and
F.
Feixas
, DMn Program,
Universitat de Girona, Spain and Uniwersytet Szczeciński, Poland
,
2009
.
95.
M.
Rodríguez-Mayorga
, RHO2-OPS: 2-DM Operations,
Institut de Química Computacional i Catàlisi (IQCC), Universitat of Girona
,
Catalonia, Spain
,
2016
.
96.
J.
Cioslowski
and
G.
Liu
, “
Fast evaluation of electron intracule and extracule densities on large grids of points
,”
J. Chem. Phys.
105
,
4151
4158
(
1996
).
97.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
, “
Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals
,”
J. Chem. Phys.
51
,
2657
(
1969
).
98.
E.
Matito
,
M.
Duran
, and
M.
Solà
, “
A novel exploration of the Hartree–Fock homolytic bond dissociation problem in the hydrogen molecule by means of electron localization measures
,”
J. Chem. Educ.
83
,
1243
(
2006
).
99.
O.
Gritsenko
and
E. J.
Baerends
, “
A simple natural orbital mechanism of “pure” van der Waals interaction in the lowest excited triplet state of the hydrogen molecule
,”
J. Chem. Phys.
124
,
054115
(
2006
).
100.
J. D.
Bowman
, Jr.
,
J. O.
Hirschfelder
, and
A. C.
Wahl
, “
Extended Hartree–Fock calculations for the ground state and Hartree–Fock calculations for the first excited state of H2
,”
J. Chem. Phys.
53
,
2743
2749
(
1970
).
101.
T.
Janowski
and
P.
Pulay
, “
A benchmark comparison of σ/σ and π/π dispersion: The dimers of naphthalene and decalin, and coronene and perhydrocoronene
,”
J. Am. Chem. Soc.
134
,
17520
17525
(
2012
).
102.
E.
Matito
,
M.
Solà
,
P.
Salvador
, and
M.
Duran
, “
Electron sharing indexes at the correlated level. Application to aromaticity calculations
,”
Faraday Discuss.
135
,
325
345
(
2007
).
103.
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 20 August 2019, edited by
R. D.
Johnson
 III
, http://cccbdb.nist.gov/.
104.
J.
Cioslowski
and
E.
Matito
, “
Benchmark full configuration interaction calculations on the lowest-energy 2P and 4P states of the three-electron harmonium atom
,”
J. Chem. Theory Comput.
7
,
915
(
2011
).
105.
M. W.
Schmidt
,
J.
Ivanic
, and
K.
Ruedenberg
, “
Electronic structure analysis of the ground-state potential energy curve of Be2
,”
J. Phys. Chem. A
114
,
8687
8696
(
2010
).
106.
M.
El Khatib
,
G. L.
Bendazzoli
,
S.
Evangelisti
,
W.
Helal
,
T.
Leininger
,
L.
Tenti
, and
C.
Angeli
, “
Beryllium dimer: A bond based on non-dynamical correlation
,”
J. Phys. Chem. A
118
,
6664
6673
(
2014
).
107.
J.
Noga
,
W.
Kutzelnigg
, and
W.
Klopper
, “
CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve
,”
Chem. Phys. Lett.
199
,
497
504
(
1992
).
108.
F. J.
Gálvez
,
E.
Buendía
, and
A.
Sarsa
, “
Two-electron properties for the beryllium atom from explicitly correlated wavefunctions
,”
Chem. Phys. Lett.
378
,
330
336
(
2003
).
109.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
E. R.
Davidson
,
F. A.
Parpia
, and
C. F.
p Fischer
, “
Ground-state correlation energies for atomic ions with 3 to 18 electrons
,”
Phys. Rev. A
47
,
3649
(
1993
).
110.
A. I.
Boothroyd
,
P. G.
Martin
,
W. J.
Keogh
, and
M. J.
Peterson
, “
An accurate analytic H4 potential energy surface
,”
J. Chem. Phys.
116
,
666
689
(
2002
).
111.
A.
Aguado
,
C.
Suárez
, and
M.
Paniagua
, “
Accurate global fit of the H4 potential energy surface
,”
J. Chem. Phys.
101
,
4004
4010
(
1994
).
112.
J. A.
Montgomery
, Jr.
and
H. H.
Michels
, “
On the stability of H4 in C3v symmetry
,”
J. Chem. Phys.
86
,
5882
5883
(
1987
).
113.
E. M.
Evleth
and
E.
Kassab
, “
On the stability of H4 in C3v symmetry: Comments
,”
J. Chem. Phys.
89
,
3928
3929
(
1988
).
114.
F. E.
Jorge
, “
Ab initio valence bond calculations of the ground and first two singlet excited states of H4 molecule
,”
J. Braz. Chem. Soc.
4
,
26
29
(
1993
).
115.
G.
Theodorakopoulos
,
I. D.
Petsalakis
, and
C. A.
Nicolaides
, “
Potential energy hypersurfaces of H4 in the ground and the first two singlet excited electronic states
,”
J. Mol. Struct.: THEOCHEM
149
,
23
31
(
1987
).
116.
C. A.
Nicolaides
,
G.
Theodorakopoulos
, and
I. D.
Petsalakis
, “
Theory of chemical reactions of vibronically excited H2(BΣu+1). I. Prediction of a strongly bound excited state of H4
,”
J. Chem. Phys.
80
,
1705
1706
(
1984
).
117.
M.
Rodríguez-Mayorga
,
E.
Ramos-Cordoba
,
P.
Salvador
,
M.
Solà
, and
E.
Matito
, “
Bonding description of the Harpoon mechanism
,”
Mol. Phys.
114
,
1345
1355
(
2016
).
118.
J. C.
Polanyi
and
A. H.
Zewail
, “
Direct observation of the transition state
,”
Acc. Chem. Res.
28
,
119
132
(
1995
).

Supplementary Material

You do not currently have access to this content.