Molecular dynamics (MD) simulations of complex electrochemical systems, such as ionic liquid supercapacitors, are increasingly including the constant potential method (CPM) to model conductive electrodes at a specified potential difference, but the inclusion of CPM can be computationally expensive. We demonstrate the computational savings available in CPM MD simulations of ionic liquid supercapacitors when the usual non-periodic slab geometry is replaced with fully periodic boundary conditions. We show how a doubled cell approach, previously used in non-CPM MD simulations of charged interfaces, can be used to enable fully periodic CPM MD simulations. Using either a doubled cell approach or a finite field approach previously reported by others, fully periodic CPM MD simulations produce comparable results to the traditional slab geometry simulations with a nearly double speedup in computational time. Indeed, these savings can offset the additional cost of the CPM algorithm, resulting in periodic CPM MD simulations that are computationally competitive with the non-periodic, fixed charge equivalent simulations for the ionic liquid supercapacitors studied here.

1.
H.
Liu
,
Y.
Liu
, and
J.
Li
,
Phys. Chem. Chem. Phys.
12
,
1685
(
2010
).
2.
C.
Lian
,
H.
Liu
,
C.
Li
, and
J.
Wu
,
AIChE J.
65
,
804
(
2019
).
3.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
,
Chem. Rev.
115
,
6357
(
2015
).
4.
A. A.
Kornyshev
,
J. Phys. Chem. B
111
,
5545
(
2007
).
5.
D.
Bedrov
,
J.-P.
Piquemal
,
O.
Borodin
,
A. D.
MacKerell
,
B.
Roux
, and
C.
Schröder
,
Chem. Rev.
119
,
7940
(
2019
).
6.
B.
Doherty
,
X.
Zhong
,
S.
Gathiaka
,
B.
Li
, and
O.
Acevedo
,
J. Chem. Theory Comput.
13
,
6131
(
2017
).
7.
D.
Roy
and
M.
Maroncelli
,
J. Phys. Chem. B
114
,
12629
(
2010
).
8.
O. Y.
Fajardo
,
S.
Di Lecce
, and
F.
Bresme
,
Phys. Chem. Chem. Phys.
22
,
1682
(
2020
).
9.
J. I.
Siepmann
and
M.
Sprik
,
J. Chem. Phys.
102
,
511
(
1995
).
10.
S. K.
Reed
,
O. J.
Lanning
, and
P. A.
Madden
,
J. Chem. Phys.
126
,
084704
(
2007
).
11.
T. R.
Gingrich
and
M.
Wilson
,
Chem. Phys. Lett.
500
,
178
(
2010
).
12.
S.
Tazi
,
M.
Salanne
,
C.
Simon
,
P.
Turq
,
M.
Pounds
, and
P. A.
Madden
,
J. Phys. Chem. B
114
,
8453
(
2010
).
13.
Z.
Wang
,
Y.
Yang
,
D. L.
Olmsted
,
M.
Asta
, and
B. B.
Laird
,
J. Chem. Phys.
141
,
184102
(
2014
).
14.
J. B.
Haskins
and
J. W.
Lawson
,
J. Chem. Phys.
144
,
184707
(
2016
).
15.
L.
Xing
,
J.
Vatamanu
,
O.
Borodin
, and
D.
Bedrov
,
J. Phys. Chem. Lett.
4
,
132
(
2013
).
16.
C.
Merlet
,
C.
Péan
,
B.
Rotenberg
,
P. A.
Madden
,
P.
Simon
, and
M.
Salanne
,
J. Phys. Chem. Lett.
4
,
264
(
2013
).
17.
J.
Vatamanu
,
D.
Bedrov
, and
O.
Borodin
,
Mol. Simul.
43
,
838
(
2017
).
18.
C.
Noh
and
Y.
Jung
,
Phys. Chem. Chem. Phys.
21
,
6790
(
2019
).
19.
B.
Demir
and
D.
Searles
,
Nanomaterials
10
,
2181
(
2020
).
20.
C.
Seidl
,
J. L.
Hörmann
, and
L.
Pastewka
,
Tribol. Lett.
69
,
22
(
2021
).
21.
H.
Nakano
and
H.
Sato
,
J. Chem. Phys.
151
,
164123
(
2019
).
22.
L.
Scalfi
,
T.
Dufils
,
K. G.
Reeves
,
B.
Rotenberg
, and
M.
Salanne
,
J. Chem. Phys.
153
,
174704
(
2020
).
23.
L. J. V.
Ahrens-Iwers
and
R. H.
Meißner
,
J. Chem. Phys.
155
,
104104
(
2021
).
24.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
25.
S.
Tee
and
D.
Bernhardt
, “
Source code for USER-CONP2 add-on for LAMMPS
,” The University of Queensland. Data Collection (
2022
).
26.
See https://github.com/srtee/lammps-USER-CONP2 for code hosted on GitHub (
2021
).
27.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
28.
T.
Dufils
,
G.
Jeanmairet
,
B.
Rotenberg
,
M.
Sprik
, and
M.
Salanne
,
Phys. Rev. Lett.
123
,
195501
(
2019
).
29.
P.
Raiteri
,
P.
Kraus
, and
J. D.
Gale
,
J. Chem. Phys.
153
,
164714
(
2020
).
30.
L.
Scalfi
,
D. T.
Limmer
,
A.
Coretti
,
S.
Bonella
,
P. A.
Madden
,
M.
Salanne
, and
B.
Rotenberg
,
Phys. Chem. Chem. Phys.
22
,
10480
(
2020
).
31.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London, Ser. A
373
,
27
(
1980
).
32.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
1989
).
33.
M.
Kawata
,
M.
Mikami
, and
U.
Nagashima
,
J. Chem. Phys.
115
,
4457
(
2001
).
34.
A.
Bródka
and
A.
Grzybowski
,
J. Chem. Phys.
117
,
8208
(
2002
).
35.
C.
Zhang
,
T.
Sayer
,
J.
Hutter
, and
M.
Sprik
,
J. Phys.: Energy
2
,
032005
(
2020
).
36.
T.
Dufils
,
M.
Sprik
, and
M.
Salanne
,
J. Phys. Chem. Lett.
12
,
4357
(
2021
).
37.
T.
Croteau
,
A. K.
Bertram
, and
G. N.
Patey
,
J. Phys. Chem. A
113
,
7826
(
2009
).
38.
Y.
Ren
,
A. K.
Bertram
, and
G. N.
Patey
,
J. Phys. Chem. B
124
,
4605
(
2020
).
39.
Z.
Wang
,
D. L.
Olmsted
,
M.
Asta
, and
B. B.
Laird
,
J. Phys.: Condens. Matter
28
,
464006
(
2016
).
40.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
41.
M. W.
Cole
and
J. R.
Klein
,
Surf. Sci.
124
,
547
(
1983
).
42.
M. Z.
Bazant
,
M. S.
Kilic
,
B. D.
Storey
, and
A.
Ajdari
,
Adv. Colloid Interface Sci.
152
,
48
(
2009
).
43.
C.
Merlet
,
M.
Salanne
,
B.
Rotenberg
, and
P. A.
Madden
,
J. Phys. Chem. C
115
,
16613
(
2011
).
44.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Taylor & Francis
,
1988
).
46.
47.
48.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
,
Phys. Rev. B
69
,
134103
(
2004
).
49.
Y.-J.
Tu
,
S.
Delmerico
, and
J. G.
McDaniel
,
J. Phys. Chem. C
124
,
2907
(
2020
).
50.
V.
Ballenegger
,
A.
Arnold
, and
J. J.
Cerdaà
,
J. Chem. Phys.
131
,
094107
(
2009
).
51.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graph.
14
,
33
(
1996
).
You do not currently have access to this content.