The dimerization of molecules in helium nanodroplets is known to preferentially yield structures of higher energy than the global energy minimum structure for a number of quite different monomers. Here, we explore dimerization in this environment using an atomistic model within statistically converged molecular dynamics (MD) trajectories, treating the solvent implicitly through the use of a thermostat, or more explicitly by embedding one monomer in a He100 cluster. The focus is on the two simplest carboxylic acids, formic and acetic, both of which have been studied experimentally. While the global minimum structure, which comprises two CO⋯HO hydrogen bonds, is predicted to be the most abundant dimer in the absence of the helium solvent, this is no longer the case once helium atoms are included. The simulations confirm the importance of kinetic trapping effects and also shed light on the occurrence of specific dynamical effects, leading to the occasional formation of high-energy structures away from minima, such as saddle configurations. Theoretically predicted infrared spectra, based on the MD statistics, are in good agreement with the experimental spectra.

1.
K.
Nauta
and
R. E.
Miller
, “
Nonequilibrium self-assembly of long chains of polar molecules in superfluid helium
,”
Science
283
,
1895
1897
(
1999
).
2.
J. D.
Pickering
,
B.
Shepperson
,
L.
Christiansen
, and
H.
Stapelfeldt
, “
Femtosecond laser induced Coulomb explosion imaging of aligned OCS oligomers inside helium nanodroplets
,”
J. Chem. Phys.
149
,
154306
(
2018
).
3.
K.
Nauta
and
R. E.
Miller
, “
Formation of cyclic water hexamer in liquid helium: The smallest piece of ice
,”
Science
287
,
293
295
(
2000
).
4.
F.
Madeja
,
M.
Havenith
,
K.
Nauta
,
R. E.
Miller
,
J.
Chocholoušová
, and
P.
Hobza
, “
Polar isomer of formic acid dimers formed in helium nanodroplets
,”
J. Chem. Phys.
120
,
10554
10560
(
2004
).
5.
K. A. E.
Meyer
,
J. A.
Davies
, and
A. M.
Ellis
, “
Shifting formic acid dimers into perspective: Vibrational scrutiny in helium nanodroplets
,”
Phys. Chem. Chem. Phys.
22
,
9637
9646
(
2020
).
6.
J. A.
Davies
,
M. W. D.
Hanson-Heine
,
N. A.
Besley
,
A.
Shirley
,
J.
Trowers
,
S.
Yang
, and
A. M.
Ellis
, “
Dimers of acetic acid in helium nanodroplets
,”
Phys. Chem. Chem. Phys.
21
,
13950
13958
(
2019
).
7.
K.
Liu
,
M. G.
Brown
,
C.
Carter
,
R. J.
Saykally
,
J. K.
Gregory
, and
D. C.
Clary
, “
Characterization of a cage form of the water hexamer
,”
Nature
381
,
501
503
(
1996
).
8.
P.
Rodziewicz
and
N. L.
Doltsinis
, “
Formic acid dimerization: Evidence for species diversity from first principles simulations
,”
J. Phys. Chem. A
113
,
6266
6274
(
2009
).
9.
Y.
Maréchal
, “
IR spectra of carboxylic acids in the gas phase: A quantitative reinvestigation
,”
J. Chem. Phys.
87
,
6344
6353
(
1987
).
10.
I.
Nahringbauer
, “
Hydrogen bond studies. 39. Reinvestigation of crystal structures of acetic acid (at +5 degrees C and −190 degrees C)
,”
Acta Chem. Scand.
24
,
453
462
(
1970
).
11.
H.
Bertagnolli
, “
The structure of liquid acetic-acid—An interpretation of neutron-diffraction results by geometrical models
,”
Chem. Phys. Lett.
93
,
287
292
(
1982
).
12.
T.
Nakabayashi
,
K.
Kosugi
, and
N.
Nishi
, “
Liquid structure of acetic acid studied by Raman spectroscopy and ab initio molecular orbital calculations
,”
J. Phys. Chem. A
103
,
8595
8603
(
1999
).
13.
M.
Lütgens
,
F.
Friedriszik
, and
S.
Lochbrunner
, “
Direct observation of the cyclic dimer in liquid acetic by probing the C=O vibration with ultrafast coherent Raman spectroscopy
,”
Phys. Chem. Chem. Phys.
16
,
18010
18016
(
2014
).
14.
N.
Lumbroso-Bader
,
C.
Coupry
,
D.
Baron
, and
D. H.
Clague
, “
Dimerization of carboxylic acids: A vapor-phase NMR study
,”
J. Magn. Reson.
17
,
386
392
(
1975
).
15.
O.
Socha
and
M.
Dračínský
, “
Dimerization of acetic acid in the gas phase—NMR experiments and quantum-chemical calculations
,”
Molecules
25
,
2150
(
2020
).
16.
F.
Uhl
and
D.
Marx
, “
Helium tagging of protonated methane in messenger spectroscopy: Does it interfere with the fluxionality of CH5+?
,”
Angew. Chem., Int. Ed.
57
,
14792
14795
(
2018
).
17.
A.
Castillo-García
,
A. W.
Hauser
,
M. P.
de Lara-Castells
, and
P.
Villarreal
, “
Path integral molecular dynamics simulation of a harpoon-type redox reaction in a helium nanodroplet
,”
Molecules
26
,
5783
(
2021
).
18.
F.
Calvo
,
E.
Yurtsever
, and
Ö.
Birer
, “
Possible formation of metastable PAH dimers upon pickup by helium droplets
,”
J. Phys. Chem. A
120
,
1727
1736
(
2016
).
19.
F.
Calvo
and
E.
Yurtsever
, “
The metastable structures of anthracene-argon clusters inside helium nanodroplets
,”
Theor. Chem. Acc.
140
,
21
(
2021
).
20.
C.
Leidlmair
,
Y.
Wang
,
P.
Bartl
,
H.
Schöbel
,
S.
Denifl
,
M.
Probst
,
M.
Alcamí
,
F.
Martín
,
H.
Zettergren
,
K.
Hansen
,
O.
Echt
, and
P.
Scheier
, “
Structures, energetics, and dynamics of helium adsorbed on isolated fullerene ions
,”
Phys. Rev. Lett.
108
,
076101
(
2012
).
21.
A.
Volk
,
P.
Thaler
,
D.
Knez
,
A. W.
Hauser
,
J.
Steurer
,
W.
Grogger
,
F.
Hofer
, and
W. E.
Ernst
, “
The impact of doping rates on the morphologies of silver and gold nanowires grown in helium nanodroplets
,”
Phys. Chem. Chem. Phys.
18
,
1451
1459
(
2016
).
22.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
1074
(
2000
).
23.
A. R.
Janzen
and
R. A.
Aziz
, “
An accurate potential energy curve for helium based on ab initio calculations
,”
J. Chem. Phys.
107
,
914
919
(
1997
).
24.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G.
Petersson
 et al, Gaussian 09, Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
25.
T.
Häber
,
U.
Schmitt
,
C.
Emmeluth
, and
M. A.
Suhm
, “
Ragout-jet FTIR spectroscopy of cluster isomerism and cluster dynamics: From carboxylic acid dimers to N2O nanoparticles
,”
Faraday Discuss.
118
,
331
359
(
2001
).
26.
P.
Zielke
and
M. A.
Suhm
, “
Raman jet spectroscopy of formic acid dimers: Low frequency vibrational dynamics and beyond
,”
Phys. Chem. Chem. Phys.
9
,
4528
4534
(
2007
).
27.
G. M.
Florio
and
T. S.
Zwier
, “
Theoretical modeling of the OH stretch infrared spectrum of carboxylic acid dimers based on first-principles anharmonic couplings
,”
J. Chem. Phys.
118
,
1735
1746
(
2003
).
28.
C.
Emmeluth
,
M. A.
Suhm
, and
D.
Luckhaus
, “
Monomers-in-dimers model for carboxylic acid dimers
,”
J. Chem. Phys.
118
,
2242
2255
(
2003
).
29.
J.
Dreyer
, “
Hydrogen-bonded acetic acid dimers: Anharmonic coupling and linear infrared spectra studied with density-functional theory
,”
J. Chem. Phys.
122
,
184306
(
2005
).
30.
P.
Blaise
,
M. J.
Wojcik
, and
O.
Henri-Rousseau
, “
Theoretical interpretation of the line shape of the gaseous acetic acid cyclic dimer
,”
J. Chem. Phys.
122
,
064306
(
2005
).
31.
F.
Calvo
and
F.
Spiegelmann
, “
Stabilization of cluster dimers by centrifugal effects
,”
Z. Phys. D: At., Mol. Clusters
41
,
195
203
(
1997
).
32.
J.
Khatri
,
T. K.
Roy
,
K.
Chatterjee
,
G.
Schwaab
, and
M.
Havenith
, “
Vibrational spectroscopy of benzonitrile–(water)1–2 clusters in helium droplets
,”
J. Phys. Chem. A
125
,
6954
6963
(
2021
).
33.
D. A.
Thomas
,
R.
Chang
,
E.
Mucha
,
M.
Lettow
,
K.
Greis
,
S.
Gewinner
,
W.
Schöllkopf
,
G.
Meijer
, and
G.
von Helden
, “
Probing the conformational landscape and thermochemistry of DNA dinucleotide anions via helium nanodroplet infrared action spectroscopy
,”
Phys. Chem. Chem. Phys.
22
,
18400
18413
(
2020
).
34.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
,
3368
(
2004
).

Supplementary Material

You do not currently have access to this content.