The high catalytic activity of Pt is accompanied by a high affinity for CO, making it extremely susceptible to poisoning. Such CO poisoning limits the use of proton exchange membrane fuel cells. In this work, using global minima search techniques and exhaustive electronic structure characterization, the dopant concentration is pinpointed as a crucial factor to improve the CO tolerance of Pt catalysts. By investigating the PtGe nanoclusters of different sizes and compositions, we found that, for those clusters with roughly the same amount of Pt and Ge, the binding to CO is weakened significantly. The uniqueness of the PtGe equimolar clusters is traced down to the electronic effects. The strong covalency and electrostatic stabilization arising from the advantageous Pt–Ge mixing make the equimolar clusters highly resistant toward CO poisoning and therefore more durable. Importantly, the novel catalysts not only are more resistant to deactivation but also remain catalytically active toward hydrogen oxidation. Representative clusters are additionally deposited on graphene with a pentagon–octagon–pentagon (5-8-5) reconstructed divacancy. The remarkable results of free-standing clusters hold true for surface mounted clusters, in which the interaction with CO is dramatically weakened for those compounds with a Pt:Ge ratio of 1:1. Our results demonstrate that Ge can be a promising alloying agent to mitigate the deactivation of Pt and that the dopant concentration is a critical factor in the design of advanced catalysts.

1.
BP
, “
BP Statistical Review of World Energy 2013
,” Technical Report (
BP p.l.c.
,
London
,
June 2013
).
2.
D.
Gielen
,
F.
Boshell
,
D.
Saygin
,
M. D.
Bazilian
,
N.
Wagner
, and
R.
Gorini
, “
The role of renewable energy in the global energy transformation
,”
Energy Strategy Rev.
24
,
38
50
(
2019
).
3.
L. A.-W.
Ellingsen
,
C. R.
Hung
,
G.
Majeau-Bettez
,
B.
Singh
,
Z.
Chen
,
M. S.
Whittingham
, and
A. H.
Strømman
, “
Nanotechnology for environmentally sustainable electromobility
,”
Nat. Nanotechnol.
11
,
1039
1051
(
2016
).
4.
X.
Chen
,
C.
Li
,
M.
Grätzel
,
R.
Kostecki
, and
S. S.
Mao
, “
Nanomaterials for renewable energy production and storage
,”
Chem. Soc. Rev.
41
,
7909
7937
(
2012
).
5.
P. A.
Owusu
and
S.
Asumadu-Sarkodie
, “
A review of renewable energy sources, sustainability issues and climate change mitigation
,”
Cogent Eng.
3
,
1167990
(
2016
).
6.
J.
Gong
and
R.
Luque
, “
Catalysis for production of renewable energy
,”
Chem. Soc. Rev.
43
,
7466
7468
(
2014
).
7.
J.
Masa
,
C.
Andronescu
, and
W.
Schuhmann
, “
Electrocatalysis as the nexus for sustainable renewable energy: The gordian knot of activity, stability, and selectivity
,”
Angew. Chem., Int. Ed.
59
,
15298
15312
(
2020
).
8.
EG&G Technical Services, Inc.
,
Fuel Cell Handbook
, 7th ed. (
US DOE
,
Morgantown, WV
,
2004
).
9.
N.
Sazali
,
W. N.
Wan Salleh
,
A. S.
Jamaludin
, and
M. N.
Mhd Razali
, “
New perspectives on fuel cell technology: A brief review
,”
Membranes
10
,
99
116
(
2020
).
10.
A.
Kirubakaran
,
S.
Jain
, and
R. K.
Nema
, “
A review on fuel cell technologies and power electronic interface
,”
Renewable Sustainable Energy Rev.
13
,
2430
2440
(
2009
).
11.
J. S.
Spendelow
, and
D. C.
Papageorgopoulos
, “
Progress in PEMFC MEA component R&D at the DOE fuel cell technologies program
,”
Fuel Cells
11
,
775
786
(
2011
).
12.
X.
Ren
,
Y.
Wang
,
A.
Liu
,
Z.
Zhang
,
Q.
Lv
, and
B.
Liu
, “
Current progress and performance improvement of Pt/C catalysts for fuel cells
,”
J. Mater. Chem. A
8
,
24284
24306
(
2020
).
13.
S. J.
Peighambardoust
,
S.
Rowshanzamir
, and
M.
Amjadi
, “
Review of the proton exchange membranes for fuel cell applications
,”
Int. J. Hydrogen Energy
35
,
9349
9384
(
2010
).
14.
S.
Zhu
,
J.
Ge
,
C.
Liu
, and
W.
Xing
, “
Atomic-level dispersed catalysts for PEMFCs: Progress and future prospects
,”
EnergyChem
1
,
100018
(
2019
).
15.
J.
Vanbuel
,
P.
Ferrari
, and
E.
Janssens
, “
Few-atom cluster model systems for a hydrogen economy
,”
Adv. Phys. X
5
,
1754132
(
2020
).
16.
P.
Jena
, “
Materials for hydrogen storage: Past, present, and future
,”
J. Phys. Chem. Lett.
2
,
206
211
(
2011
).
17.
H. A.
Gasteiger
,
S. S.
Kocha
,
B.
Sompalli
, and
F. T.
Wagner
, “
Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs
,”
Appl. Catal. B
56
,
9
35
(
2005
).
18.
M. K.
Debe
, “
Electrocatalyst approaches and challenges for automotive fuel cells
,“
Nature
486
,
43
51
(
2012
).
19.
E.
Jimenez-Izal
and
A. N.
Alexandrova
, “
Computational design of clusters for catalysis
,”
Annu. Rev. Phys. Chem.
69
,
377
400
(
2018
).
20.
E.
Jimenez-Izal
,
B. C.
Gates
, and
A. N.
Alexandrova
, “
Designing clusters for heterogeneous catalysis
,”
Phys. Today
72
(
7
),
38
43
(
2019
).
21.
X.
Cheng
,
Z.
Shi
,
N.
Glass
,
L.
Zhang
,
J.
Zhang
,
D.
Song
,
Z.-S.
Liu
,
H.
Wang
, and
J.
Shen
, “
A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation
,”
J. Power Sources
165
,
739
756
(
2007
).
22.
E.
Christoffersen
,
P.
Liu
,
A.
Ruban
,
H. L.
Skriver
, and
J. K.
Nørskov
, “
Anode materials for low-temperature fuel cells: A density functional theory study
,”
J. Catal.
199
,
123
131
(
2001
).
23.
J. J.
Baschuk
and
X.
Li
, “
Carbon monoxide poisoning of proton exchange membrane fuel cells
,”
Int. J. Energy Res.
25
,
695
713
(
2001
).
24.
X.
Yang
,
Y.
Wang
,
X.
Wang
,
B.
Mei
,
E.
Luo
,
Y.
Li
,
Q.
Meng
,
Z.
Jin
,
Z.
Jiang
,
C.
Liu
,
J.
Ge
, and
W.
Xing
, “
CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanoparticles
,”
Angew. Chem., Int. Ed.
60
,
6177
6183
(
2021
).
25.
S. M. M.
Ehteshami
, and
S. H.
Chan
, “
A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membrane fuel cells
,”
Electrochim. Acta
93
,
334
345
(
2013
).
26.
S.
Stolbov
,
M. A.
Ortigoza
,
R.
Adzic
, and
T. S.
Rahman
, “
High CO tolerance of Pt/Ru nanocatalyst: Insight from first principles calculations
,”
J. Chem. Phys.
130
,
124714
(
2009
).
27.
S. J.
Lee
,
S.
Mukerjee
,
E. A.
Ticianelli
, and
J.
McBreen
, “
Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells
,”
Electrochim. Acta
44
,
3283
3293
(
1999
).
28.
B. E.
Hayden
,
M. E.
Rendall
, and
O.
South
, “
Electro-oxidation of carbon monoxide on well-ordered Pt(111)/Sn surface alloys
,”
J. Am. Chem. Soc.
125
,
7738
7742
(
2003
).
29.
G.
Samjeské
,
H.
Wang
,
T.
Löffler
, and
H.
Baltruschat
, “
CO and methanol oxidation at Pt-electrodes modified by Mo
,”
Electrochim. Acta
47
,
3681
36902
(
2002
).
30.
P.
Ferrari
,
J.
Vanbuel
,
N. M.
Tam
,
M. T.
Nguyen
,
S.
Gewinner
,
W.
Schöllkopf
,
A.
Fielicke
, and
E.
Janssens
, “
Effects of charge transfer on the adsorption of CO on small molybdenum-doped platinum clusters
,”
Chem. Eur. J.
23
,
4120
4127
(
2017
).
31.
P.
Ferrari
,
L. M.
Molina
,
V. E.
Kaydashev
,
J. A.
Alonso
,
P.
Lievens
, and
E.
Janssens
, “
Controlling the adsorption of carbon monoxide on platinum clusters by dopant-induced electronic structure modification
,”
Angew. Chem., Int. Ed.
55
,
11059
11063
(
2016
).
32.
M.
Wakisaka
,
S.
Mitsui
,
Y.
Hirose
,
K.
Kawashima
,
H.
Uchida
, and
M.
Watanabe
, “
Electronic structures of Pt−Co and Pt−Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC−XPS
,”
J. Phys. Chem. B
110
,
23489
23496
(
2006
).
33.
M. D.
Obradović
,
A. V.
Tripković
, and
S. Lj.
Gojković
, “
Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt–Co alloys
,”
J. Solid State Electrochem.
16
,
587
595
(
2012
).
34.
Z.
Chen
,
D.
Rao
,
J.
Zhang
,
Y.
Liu
,
Y.
Wang
,
C.
Liu
,
W.
Hu
, and
Y.
Deng
, “
Highly active and CO-tolerant trimetallic NiPtPd hollow nanocrystals as electrocatalysts for methanol electro-oxidation reaction
,”
ACS Appl. Energy Mater.
2
,
4763
4773
(
2019
).
35.
A. B.
Yousaf
,
M.
Imran
,
A.
Zeb
,
T.
Wen
,
X.
Xie
,
Y.-F.
Jiang
,
C.-Z.
Yuan
, and
A.-W.
Xu
, “
Single phase PtAg bimetallic alloy nanoparticles highly dispersed on reduced graphene oxide for electrocatalytic application of methanol oxidation reaction
,”
Electrochim. Acta
197
,
117
125
(
2016
).
36.
M.
Yin
,
Y.
Huang
,
L.
Liang
,
J.
Liao
,
C.
Liu
, and
W.
Xing
, “
Inhibiting CO formation by adjusting surface composition in PtAu alloys for methanol electrooxidation
,”
Chem. Commun.
47
,
8172
8174
(
2011
).
37.
C.
Zhan
,
Y.
Xu
,
L.
Bu
,
H.
Zhu
,
Y.
Feng
,
T.
Yang
,
Y.
Zhang
,
Z.
Yang
,
B.
Huang
,
Q.
Shao
, and
X.
Huang
, “
Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis
,”
Nat. Commun.
12
,
6261
6268
(
2021
).
38.
M. J.
Lee
,
J. S.
Kang
,
Y. S.
Kang
,
D. Y.
Chung
,
H.
Shin
,
C.-Y.
Ahn
,
S.
Park
,
M.-J.
Kim
,
S.
Kim
,
K.-S.
Lee
, and
Y.-E.
Sung
, “
Understanding the bifunctional effect for removal of CO poisoning: Blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system
,”
ACS Catal.
6
,
2398
2407
(
2016
).
39.
E.
Jimenez-Izal
,
J.-Y.
Liu
, and
A. N.
Alexandrova
, “
Germanium as key dopant to boost the catalytic performance of small platinum clusters for alkane dehydrogenation
,”
J. Catal.
374
,
93
100
(
2019
).
40.
S.
Rimaz
,
L.
Chen
,
S.
Kawi
, and
A.
Borgna
, “
Promoting effect of Ge on Pt-based catalysts for dehydrogenation of propane to propylene
,”
Appl. Catal., A
588
,
117266
(
2019
).
41.
N.
Győrffy
,
I.
Bakos
,
S.
Szabó
,
L.
Tóth
,
U.
Wild
,
R.
Schlögl
, and
Z.
Paá
, “
Preparation, characterization and catalytic testing of GePt catalysts
,”
J. Catal.
263
,
372
379
(
2009
).
42.
I. M.
Vilella
,
I.
Borbáth
,
F.
Somodi
,
J. L.
Margitfalvi
,
S. R.
de Miguel
,
O. A.
Scelza
, “
The influence of the preparation method on the behaviour of PtGe catalysts supported on activated carbon in citral hydrogenation
,”
Catal. Lett.
125
,
254
263
(
2008
).
43.
V. A.
Mazzieri
,
C. L.
Pieck
,
C. R.
Vera
,
J. C.
Yori
, and
J. M.
Grau
, “
Effect of Ge content on the metal and acid properties of Pt–Re–Ge/Al2O3–Cl catalysts for naphtha
,”
Appl. Catal., A
353
,
93
100
(
2009
).
44.
T. F.
Garetto
,
A.
Borgna
, and
C. R.
Apesteguía
, “
High-thiotolerant Pt–Ge/Al2O3 naphtha reforming catalysts by in situ alloying
,”
Stud. Surf. Sci. Catal.
101
,
1155
1164
(
1996
).
45.
A.
Borgna
,
T. F.
Garetto
, and
C. R.
Apesteguía
, “
Simultaneous deactivation by coke and sulfur of bimetallic Pt–Re(Ge, Sn)/Al2O3 catalysts for n-hexane reforming
,”
Appl. Catal., A
197
,
11
21
(
2000
).
46.
S.-C.
Lim
,
M.-C.
Hsiao
,
M.-D.
Lu
,
Y.-L.
Tung
,
H.-Y.
Tuan
, “
Synthesis of germanium-platinum nanoparticles as high-performance catalysts for spray-deposited large-area dye-sensitized solar cells (DSSC) and the hydrogen evolution reaction (HER)
,“
Nanoscale
10
,
16657
16666
(
2018
).
47.
N. S.
Veizaga
,
V. I.
Rodriguez
,
M.
Bruno
, and
S. R.
de Miguel
, “
The role of surface functionalities in PtGe and PtIn catalysts for direct methanol fuel cells
,”
Electrocatalysis
10
,
125
133
(
2019
).
48.
N. S.
Veizaga
,
V. A.
Paganin
,
T. A.
Rocha
,
O. A.
Scelza
,
S. R.
de Miguel
, and
E. R.
Gonzalez
, “
Development of PtGe and PtIn anodic catalysts supported on carbonaceous materials for DMFC
,”
Int. J. Hydrogen Energy
39
,
8728
8737
(
2014
).
49.
E. M.
Crabb
and
M. K.
Ravikumar
, “
Synthesis and characterisation of carbon-supported PtGe electrocatalysts for CO oxidation
,”
Electrochim. Acta
46
,
1033
1041
(
2001
).
50.
A.
Ugartemendia
,
K.
Peeters
,
P.
Ferrari
,
A.
Cózar
,
J. M.
Mercero
,
E.
Janssens
,
E.
Jimenez‐Izal
, “
Doping platinum with germanium: An effective way to mitigate the CO poisoning
,”
ChemPhysChem
22
,
1603
1610
(
2021
).
51.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
52.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
53.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
14269
(
1994
).
54.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
55.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
56.
M.-A.
Ha
,
E. T.
Baxter
,
A. C.
Cass
,
S. L.
Anderson
, and
A. N.
Alexandrova
, “
Boron switch for selectivity of catalytic dehydrogention on size-selected Pt clusters on Al2O3
,”
J. Am. Chem. Soc.
139
,
11568
11575
(
2017
).
57.
J. B. A.
Davis
,
F.
Baletto
,
R. L.
Johnston
, “
The effect of dispersion correction on the adsorption of CO on metallic nanoparticles
,”
J. Phys. Chem. A
119
,
9703
9709
(
2015
).
58.
E. T.
Baxter
,
M.-A.
Ha
,
A. C.
Cass
,
A. N.
Alexandrova
, and
S. L.
Anderson
, “
Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: Strong cluster-size dependence linked to preferred catalyst morphologies
,”
ACS Catal.
7
,
3322
3335
(
2017
).
59.
P.
Ferrari
and
E.
Janssens
, “
Relative stability of small silver, platinum, and palladium doped gold cluster cations
,”
Appl. Sci.
9
,
1666
1678
(
2019
).
60.
L. M.
Molina
,
S.
Lee
,
K.
Sell
,
G.
Barcaro
,
A.
Fortunelli
 et al, “
Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein: A joint experimental and theoretical study
,”
Catal. Today
160
,
116
130
(
2011
).
61.
L. E.
Gálvez-González
,
J. A.
Alonso
,
L. O.
Paz-Borbón
, and
A.
Posada-Amarillas
, “
H2 adsorption on Cu4−xMx (M = Au, Pt; x = 0–4) clusters: Similarities and differences as predicted by density functional theory
,”
J. Chem. Phys. C
123
,
30768
30780
(
2019
).
62.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
63.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Correction of generalized gradient approximation made simple
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
64.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
65.
H.
Zhai
and
A. N.
Alexandrova
, “
Ensemble-average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization
,”
J. Chem. Theory Comput.
12
,
6213
6226
(
2016
).
66.
D. Y.
Zubarev
and
A. I.
Boldyrev
, “
Developing paradigms of chemical bonding: Adaptive natural density partitioning
,”
Phys. Chem. Chem. Phys.
10
,
5207
5217
(
2008
).
67.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
,
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford CT
,
2016
.
68.
F.
Weigend
,
M.
Häser
, and
H.
Patzelt
, “
RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency
,”
Chem. Phys. Lett.
294
,
143
152
(
1998
).
69.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
70.
L.
Li
,
R.
Huang
,
Y.
Wen
,
R. L.
Johnston
, “
Structural and magnetic properties of Co–Pt clusters: A spin-polarized density functional study
,”
J. Magn. Magn. Mater.
503
,
166651
(
2020
).
71.
T. J.
Gorey
,
B.
Zandkarimi
,
G.
Li
,
E. T.
Baxter
,
A. N.
Alexandrova
, and
S. L.
Anderson
, “
Coking-resistant sub-nano dehydrogenation catalysts: PtnSnx/SiO2 (n = 4, 7)
,”
ACS Catal.
10
,
4543
4558
(
2020
).
72.
G.
Li
,
B.
Zandkarimi
,
A. C.
Cass
,
T. J.
Gorey
,
B. J.
Allen
,
A. N.
Alexandrova
, and
S. L.
Anderson
, “
Sn-modification of Pt7/alumina model catalysts: Suppression of carbon deposition and enhanced thermal stability
,”
J. Chem. Phys.
152
,
024702
(
2020
).
73.
I.
Demiroglu
,
K.
Yao
,
H. A.
Hussein
, and
R. L.
Johnston
, “
DFT global optimization of gas-phase subnanometer Ru–Pt clusters
,”
J. Phys. Chem. C
121
,
10773
10780
(
2017
).
74.
X.
Lian
,
W. Q.
Tian
,
W.
Guo
,
F.
Liu
,
P.
Xiao
, and
Y.
Zhang
, “
DFT study of Pt7–xRux (x = 0, 1, 2, 3) clusters and their interactions with CO
,”
Eur. Phys. J. D
68
,
72
79
(
2014
).
75.
L. E.
Gálvez-González
,
A.
Posada-Amarillas
, and
L.
Oliver Paz-Borbón
, “
Structure, energetics, and thermal behavior of bimetallic Re–Pt clusters
,”
J. Phys. Chem. A
125
,
4294
4305
(
2021
).
76.
G.
Blyholder
, “
Molecular orbital view of chemisorbed carbon monoxide
,”
J. Phys. Chem.
68
,
2772
2777
(
1964
).
77.
P.
Ferrari
,
G.
Libeert
,
N. M.
Tam
, and
E.
Janssens
, “
Interaction of carbon monoxide with doped metal clusters
,”
CrystEngComm
22
,
4807
4815
(
2020
).
78.
H.
Aizawa
and
S.
Tsuneyuki
, “
First-principles study of CO bonding to Pt(111): Validity of the blyholder model
,”
Surf. Sci.
399
,
L364
L370
(
1989
).
79.
G. T. K.
Kalhara Gunasooriya
and
M.
Saeys
, “
CO adsorption site preference on platinum: Charge is the essence
,”
ACS Catal.
8
,
3770
3774
(
2018
).
80.
A. H.
Motagamwala
,
R.
Almallahi
,
J.
Wortman
,
V. O.
Igenegbai
, and
S.
Linic
, “
Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit
,”
Science
373
,
217
222
(
2021
).
81.
D. Y.
Zubarev
and
A. I.
Boldyrev
, “
Deciphering chemical bonding in golden cages
,”
J. Phys. Chem.
113
,
866
868
(
2009
).
82.
M.-A.
Ha
,
J.
Dadras
, and
A. N.
Alexandrova
, “
Rutile-deposited Pt–Pd clusters: A hypothesis regarding the stability at 50/50 ratio
,”
ACS Catal.
4
,
3570
3580
(
2014
).
M.-A.
Ha
,
J.
Dadras
, and
A. N.
Alexandrova
, “
Correction to rutile-deposited Pt–Pd clusters: A hypothesis regarding the stability at 50/50 ratio
,”
ACS Catal.
5
,
2910
(
2015
).
83.
A. K.
Geim
, “
Graphene: Status and prospects
,”
Science
324
,
1530
1534
(
2009
).
84.
C. N. R.
Rao
,
A. K.
Sood
,
K. S.
Subrahmanyam
, and
A.
Govindaraj
, “
Graphene: The new two-dimensional nanomaterial
,”
Angew. Chem., Int. Ed.
48
,
7752
7777
(
2009
).
85.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
86.
E.
Yoo
,
T.
Okata
,
T.
Akita
,
M.
Kohyama
,
J.
Nakamura
, and
I.
Honma
, “
Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface
,”
Nano Lett.
9
,
2255
2259
(
2009
).
87.
E.
Yoo
,
T.
Okada
,
T.
Akita
,
M.
Kohyama
,
I.
Honma
, and
J.
Nakamura
, “
Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells
,”
J. Power Sources
196
,
110
115
(
2011
).
88.
J.
Zhang
,
Y.
Deng
,
X.
Cai
,
Y.
Chen
,
M.
Peng
,
Z.
Jia
,
Z.
Jiang
,
P.
Ren
,
S.
Yao
,
J.
Xie
,
D.
Xiao
,
X.
Wen
,
N.
Wang
,
H.
Liu
, and
D.
Ma
, “
Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction
,”
ACS Catal.
9
,
5998
6005
(
2019
).
89.
Q.
Qi
,
H.
Liu
,
W.
Feng
,
H.
Tian
,
H.
Xu
, and
X.
Huang
, “
Theoretical investigation on the interaction of subnano platinum clusters with graphene using DFT methods
,”
Comput. Mater. Sci.
96
,
268
276
(
2015
).
90.
I.
Fampiou
and
A.
Ramasubramaniam
, “
Binding of Pt nanoclusters to point defects in graphene: Adsorption, morphology, and electronic structure
,”
J. Phys. Chem. C
116
,
6543
6555
(
2012
).
91.
Y.
Okamoto
, “
Density-functional calculations of icosahedral M13 (M = Pt and Au) clusters on graphene sheets and flakes
,”
Chem. Phys. Lett.
420
,
382
386
(
2006
).
92.
M.
Zhou
,
A.
Zhang
,
Z.
Dai
,
C.
Zhang
, and
Y. P.
Feng
, “
Greatly enhanced adsorption and catalytic activity of Au and Pt clusters on defective graphene
,”
J. Chem. Phys.
132
,
194704
(
2010
).
93.
W.
Zhang
,
D.
Cheng
, and
J.
Zhu
, “
Theoretical study of CO catalytic oxidation on free and defective graphene-supported Au–Pd bimetallic clusters
,”
RSC Adv.
4
,
42554
42561
(
2014
).
94.
Y.
Hamamoto
,
S. A.
Wella
,
K.
Inagaki
,
F.
Abild-Pedersen
,
T.
Bligaard
,
I.
Hamada
, and
Y.
Morikawa
, “
Enhanced CO tolerance of Pt clusters supported on graphene with lattice vacancies
,”
Phys. Rev. B
102
,
075408
(
2020
).
95.
K. S. S. V. P.
Reddy
and
P. A.
Deshpande
, “
Density functional theory study of the immobilization and hindered surface migration of Pd3 and Pd4 nanoclusters over defect-ridden graphene: Implications for heterogeneous catalysis
,”
ACS Appl. Nano Mater.
4
,
9068
9079
(
2021
).

Supplementary Material

You do not currently have access to this content.