We present an implementation of time-dependent linear-response equations for strongly orthogonal geminal wave function models: the time-dependent generalized valence bond (TD-GVB) perfect-pairing theory and the antisymmetrized product of strongly orthogonal geminals. The geminal wave functions are optimized using a restricted-step second-order algorithm suitable for handling many geminals, and the linear-response equations are solved in an efficient way using a direct iterative approach. The wave function optimization algorithm features an original scheme to create initial orbitals for the geminal functions in a black-box fashion. The implementation is employed to examine the accuracy of the geminal linear response for singlet excitation energies of small and medium-sized molecules. In systems dominated by dynamic correlation, geminal models constitute only a minor improvement with respect to time-dependent Hartree–Fock. Compared to the linear-response complete active space self-consistent field, TD-GVB either misses or gives large errors for states dominated by double excitations.

1.
G. N.
Lewis
, “
The atom and the molecule
,”
J. Am. Chem. Soc.
38
,
762
785
(
1916
).
2.
W.
Heitler
and
F.
London
, “
Wechselwirkung neutraler atome und homöopolare bindung nach der quantenmechanik
,”
Z. Phys.
44
,
455
472
(
1927
).
3.
A. C.
Hurley
,
J. E.
Lennard-Jones
, and
J. A.
Pople
, “
The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules
,”
Proc. R. Soc. London, Ser. A
220
,
446
455
(
1953
).
4.
F. W.
Bobrowicz
and
W. A.
Goddard
, “
The self-consistent field equations for generalized valence bond and open-shell Hartree–Fock wave functions
,” in
Methods of Electronic Structure Theory
, edited by
H. F.
Schaefer
(
Springer
,
Boston
,
1977
), pp.
79
127
.
5.
W.
Kutzelnigg
, “
Direct determination of natural orbitals and natural expansion coefficients of many-electron wavefunctions. I. Natural orbitals in the geminal product approximation
,”
J. Chem. Phys.
40
,
3640
3647
(
1964
).
6.
J. M.
Foster
and
S. F.
Boys
, “
Canonical configurational interaction procedure
,”
Rev. Mod. Phys.
32
,
300
302
(
1960
).
7.
J.
Pipek
and
P. G.
Mezey
, “
A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions
,”
J. Chem. Phys.
90
,
4916
4926
(
1989
).
8.
V. A.
Rassolov
, “
A geminal model chemistry
,”
J. Chem. Phys.
117
,
5978
5987
(
2002
).
9.
M.
Tarumi
,
M.
Kobayashi
, and
H.
Nakai
, “
Accelerating convergence in the antisymmetric product of strongly orthogonal geminals method
,”
Int. J. Quantum Chem.
113
,
239
244
(
2013
).
10.
H. J. Aa.
Jensen
and
P.
Jørgensen
, “
A direct approach to second-order MCSCF calculations using a norm extended optimization scheme
,”
J. Chem. Phys.
80
,
1204
1214
(
1984
).
11.
H. J. Aa.
Jensen
and
H.
Ågren
, “
MC SCF optimization using the direct, restricted step, second-order norm-extended optimization method
,”
Chem. Phys. Lett.
110
,
140
144
(
1984
).
12.
H. J. Aa.
Jensen
and
H.
Ågren
, “
A direct, restricted-step, second-order MC SCF program for large scale ab initio calculations
,”
Chem. Phys.
104
,
229
250
(
1986
).
13.
E.
Pastorczak
,
J.
Shen
,
M.
Hapka
,
P.
Piecuch
, and
K.
Pernal
, “
Intricacies of van der Waals interactions in systems with elongated bonds revealed by electron-groups embedding and high-level coupled-cluster approaches
,”
J. Chem. Theory Comput.
13
,
5404
5419
(
2017
).
14.
K.
Pernal
, “
Electron correlation from the adiabatic connection for multireference wave functions
,”
Phys. Rev. Lett.
120
,
013001
(
2018
).
15.
E.
Pastorczak
,
H. J. Aa.
Jensen
,
P. H.
Kowalski
, and
K.
Pernal
, “
Generalized valence bond perfect-pairing made versatile through electron-pairs embedding
,”
J. Chem. Theory Comput.
15
,
4430
4439
(
2019
).
16.
M.
Hapka
,
M.
Przybytek
, and
K.
Pernal
, “
Second-order dispersion energy based on multireference description of monomers
,”
J. Chem. Theory Comput.
15
,
1016
1027
(
2019
).
17.
M.
Hapka
,
M.
Przybytek
, and
K.
Pernal
, “
Second-order exchange-dispersion energy based on a multireference description of monomers
,”
J. Chem. Theory Comput.
15
,
6712
6723
(
2019
).
18.
M.
Hapka
,
M.
Przybytek
, and
K.
Pernal
, “
Symmetry-adapted perturbation theory based on multiconfigurational wave function description of monomers
,”
J. Chem. Theory Comput.
17
,
5538
5555
(
2021
).
19.
K.
Pernal
,
K.
Chatterjee
, and
P. H.
Kowalski
, “
How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches
,”
J. Chem. Phys.
140
,
014101
(
2014
).
20.
K.
Chatterjee
and
K.
Pernal
, “
Excitation energies from time-dependent generalized valence bond method
,”
Theor. Chem. Acc.
134
,
118
(
2015
).
21.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate reference energies and benchmarks
,”
J. Chem. Theory Comput.
14
,
4360
4379
(
2018
).
22.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
, “
Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3
,”
J. Chem. Phys.
128
,
134110
(
2008
).
23.
T.
Arai
, “
Theorem on separability of electron pairs
,”
J. Chem. Phys.
33
,
95
98
(
1960
).
24.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenaes
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansík
,
H. J. Aa.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjaergaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnaes
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V. V.
Rybkin
,
P.
Sałek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
284
(
2014
).
25.
T.
Sano
, “
Elementary Jacobi rotation method for generalized valence bond perfect-pairing calculations combined with simple procedure for generating reliable initial orbitals
,”
J. Mol. Struct.: THEOCHEM
528
,
177
191
(
2000
).
26.
G. J. O.
Beran
,
B.
Austin
,
A.
Sodt
, and
M.
Head-Gordon
, “
Unrestricted perfect pairing: The simplest wave-function-based model chemistry beyond mean field
,”
J. Phys. Chem. A
109
,
9183
9192
(
2005
).
27.
Y.
Wang
and
R. A.
Poirier
, “
Computational developments in generalized valence bond calculations
,”
J. Comput. Chem.
17
,
313
325
(
1996
).
28.
Q.
Wang
,
J.
Zou
,
E.
Xu
,
P.
Pulay
, and
S.
Li
, “
Automatic construction of the initial orbitals for efficient generalized valence bond calculations of large systems
,”
J. Chem. Theory Comput.
15
,
141
153
(
2019
).
29.
J.-M.
Langlois
,
T.
Yamasaki
,
R. P.
Muller
, and
W. A. I.
Goddard
, “
Rule-based trial wave functions for generalized valence bond theory
,”
J. Phys. Chem.
98
,
13498
13505
(
1994
).
30.
P.
Pulay
and
T. P.
Hamilton
, “
UHF natural orbitals for defining and starting MC-SCF calculations
,”
J. Chem. Phys.
88
,
4926
4933
(
1988
).
31.
W. L.
Luken
, “
Localized orbitals and the theory of separated pairs
,”
J. Chem. Phys.
78
,
5729
5732
(
1983
).
32.
E.
Rosta
and
P. R.
Surján
, “
Two-body zeroth order Hamiltonians in multireference perturbation theory: The APSG reference state
,”
J. Chem. Phys.
116
,
878
890
(
2002
).
33.
J.
Olsen
,
H. J. Aa.
Jensen
, and
P.
Jørgensen
, “
Solution of the large matrix equations which occur in response theory
,”
J. Comput. Phys.
74
,
265
282
(
1988
).
34.
P.
Jorgensen
,
H. J. Aa.
Jensen
, and
J.
Olsen
, “
Linear response calculations for large scale multiconfiguration self-consistent field wave functions
,”
J. Chem. Phys.
89
,
3654
3661
(
1988
).
35.
J.
Olsen
and
P.
Jørgensen
, “
Linear and nonlinear response functions for an exact state and for an MCSCF state
,”
J. Chem. Phys.
82
,
3235
3264
(
1985
).
36.
K. J. H.
Giesbertz
,
O. V.
Gritsenko
, and
E. J.
Baerends
, “
Response calculations based on an independent particle system with the exact one-particle density matrix: Excitation energies
,”
J. Chem. Phys.
136
,
094104
(
2012
).
37.
K. J. H.
Giesbertz
,
K.
Pernal
,
O. V.
Gritsenko
, and
E. J.
Baerends
, “
Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems
,”
J. Chem. Phys.
130
,
114104
(
2009
).
38.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
,
A. M.
Sanchez de Merás
, and
T.
Helgaker
, “
The CC3 model: An iterative coupled cluster approach including connected triples
,”
J. Chem. Phys.
106
,
1808
1818
(
1997
).
39.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
40.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
41.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian basis sets for atoms Li to Kr
,”
J. Chem. Phys.
97
,
2571
2577
(
1992
).
42.
B.
Helmich-Paris
, “
Benchmarks for electronically excited states with CASSCF methods
,”
J. Chem. Theory Comput.
15
,
4170
4179
(
2019
).
43.
E. R.
Kjellgren
,
E. D.
Hedegård
, and
H. J. Aa.
Jensen
, “
Triplet excitation energies from multiconfigurational short-range density-functional theory response calculations
,”
J. Chem. Phys.
151
,
124113
(
2019
).
44.
J.
Čížek
and
J.
Paldus
, “
Stability conditions for the solutions of the Hartree–Fock equations for atomic and molecular systems. Application to the pi-electron model of cyclic polyenes
,”
J. Chem. Phys.
47
,
3976
3985
(
1967
).
45.
E.
Dalgaard
, “
Time-dependent multiconfigurational Hartree–Fock theory
,”
J. Chem. Phys.
72
,
816
823
(
1980
).
46.
S.
Shaik
and
P. C.
Hiberty
, “
Myth and reality in the attitude toward valence-bond (VB) theory: Are its ‘failures’ real?
,”
Helv. Chim. Acta
86
,
1063
1084
(
2003
).
47.
K. V.
Lawler
,
G. J. O.
Beran
, and
M.
Head-Gordon
, “
Symmetry breaking in benzene and larger aromatic molecules within generalized valence bond coupled cluster methods
,”
J. Chem. Phys.
128
,
024107
(
2008
).
48.
P. R.
Surján
, “
The interaction of chemical bonds. III. Perturbed strictly localized geminals in LMO basis
,”
Int. J. Quantum Chem.
52
,
563
574
(
1994
).
49.
J.
Cullen
, “
Generalized valence bond solutions from a constrained coupled cluster method
,”
Chem. Phys.
202
,
217
229
(
1996
).
50.
R. B.
Murphy
,
W. T.
Pollard
, and
R. A.
Friesner
, “
Pseudospectral localized generalized Møller–Plesset methods with a generalized valence bond reference wave function: Theory and calculation of conformational energies
,”
J. Chem. Phys.
106
,
5073
5084
(
1997
).
51.
F.
Faglioni
and
W. A.
Goddard
 III
, “
GVB–RP: A reliable MCSCF wave function for large systems
,”
Int. J. Quantum Chem.
73
,
1
22
(
1999
).
52.
T.
Van Voorhis
and
M.
Head-Gordon
, “
The imperfect pairing approximation
,”
Chem. Phys. Lett.
317
,
575
580
(
2000
).
53.
M.
Sejpal
and
R. P.
Messmer
, “
Calculations using generalized valence bond based Møller–Plesset perturbation theory
,”
J. Chem. Phys.
114
,
4796
4804
(
2001
).
54.
V. A.
Rassolov
,
F.
Xu
, and
S.
Garashchuk
, “
Geminal model chemistry II. Perturbative corrections
,”
J. Chem. Phys.
120
,
10385
10394
(
2004
).
55.
A. G.
Anderson
and
W. A.
Goddard
, “
Generalized valence bond wave functions in quantum Monte Carlo
,”
J. Chem. Phys.
132
,
164110
(
2010
).
56.
F.
Fracchia
,
C.
Filippi
, and
C.
Amovilli
, “
Size-extensive wave functions for quantum Monte Carlo: A linear scaling generalized valence bond approach
,”
J. Chem. Theory Comput.
8
,
1943
1951
(
2012
).
57.
T.
Zoboki
,
Á.
Szabados
, and
P. R.
Surján
, “
Linearized coupled cluster corrections to antisymmetrized product of strongly orthogonal geminals: Role of dispersive interactions
,”
J. Chem. Theory Comput.
9
,
2602
2608
(
2013
).
58.
E.
Xu
and
S.
Li
, “
Block correlated second order perturbation theory with a generalized valence bond reference function
,”
J. Chem. Phys.
139
,
174111
(
2013
).
59.
E.
Pastorczak
and
K.
Pernal
, “
ERPA–APSG: A computationally efficient geminal-based method for accurate description of chemical systems
,”
Phys. Chem. Chem. Phys.
17
,
8622
8626
(
2015
).
60.
K.
Chatterjee
,
E.
Pastorczak
,
K.
Jawulski
, and
K.
Pernal
, “
A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction
,”
J. Chem. Phys.
144
,
244111
(
2016
).
61.
M.
Filatov
,
T. J.
Martínez
, and
K. S.
Kim
, “
Using the GVB ansatz to develop ensemble DFT method for describing multiple strongly correlated electron pairs
,”
Phys. Chem. Chem. Phys.
18
,
21040
21050
(
2016
).
62.
E. D.
Hedegård
, “
Multi-configurational density functional theory: Progress and challenges
,” in
Quantum Chemistry and Dynamics of Excited States
(
John Wiley & Sons, Ltd.
,
2020
), Chap. 3, pp.
47
75
.
63.
K.
Pernal
and
M.
Hapka
, “
Range-separated multiconfigurational density functional theory methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1566
(
2022
).

Supplementary Material

You do not currently have access to this content.