Room temperature adsorption of molecular iodine on Ag(111) has been studied by scanning tunneling microscopy (STM), low energy electron diffraction, Auger electron spectroscopy with factor analysis, and density functional theory (DFT). At the chemisorption stage, iodine first forms a (3×3)R30° structure. Further iodine dosing leads to continuous commensurate–incommensurate phase transition, taking place via the formation of striped superheavy domain walls. As a result, the uniaxially compressed (13 ×3-R30°) phase is formed at an iodine coverage (θ) of 0.38 ML. At θ > 0.38 ML, first-order phase transition begins, leading to the formation of hexagonal moiré-like phases, which exhibit an anomalously large corrugation in STM (0.8–2.3 Å). In the range of 0.40–0.43 ML, the compression of hexagonal phases occurs, which ends at the formation of the (7 × 7)R21.8° structure at saturation. The DFT calculations allow us to explain the anomalous atomic corrugation of the hexagonal phases by the strong violation of the atomic structure of the substrate including up to ten layers of silver. Iodine dosing above 0.43 ML leads to the growth of 2D islands of silver iodide. The STM images of the silver iodide surface demonstrate a clear visible hexagonal superstructure with a periodicity of 25 Å superimposed with a quasi-hexagonal atomic modulation. DFT calculations of the atomic structure of AgI islands point to the formation of a sandwich-like double layer honeycomb structure similar to the case of I/Ag(100).

1.
2.
E. I.
Altman
, in
Adsorbed Layers on Surfaces. Part 1: Adsorption on Surfaces and Surface Diffusion of Adsorbates
, edited by
H. P.
Bonzel
(
Springer
,
Berlin
,
2001
), Vol. 42A1, pp.
420
442
.
3.
B. V.
Andryushechkin
,
T. V.
Pavlova
, and
K. N.
Eltsov
,
Surf. Sci. Rep.
73
,
83
(
2018
).
4.
P. H.
Citrin
,
P.
Eisenberger
, and
R. C.
Hewitt
,
Phys. Rev. Lett.
41
,
309
(
1978
).
5.
P. H.
Citrin
,
P.
Eisenberger
, and
R. C.
Hewitt
,
J. Vac. Sci. Technol.
15
,
449
(
1978
).
6.
P. H.
Citrin
,
P.
Eisenberger
,
R. C.
Hewitt
, and
H. H.
Farrell
,
J. Vac. Sci. Technol.
16
,
537
(
1979
).
7.
U.
Bardi
and
G.
Rovida
,
Surf. Sci.
128
,
145
(
1983
).
8.
H. H.
Farrell
,
M. M.
Traum
,
N. V.
Smith
,
W. A.
Royer
,
D. P.
Woodruff
, and
P. D.
Johnson
,
Surf. Sci.
102
,
527
(
1981
).
9.
B. M.
Ocko
,
O. M.
Magnussen
,
J. X.
Wang
,
R. R.
Adžić
, and
T.
Wandlowski
,
Physica B
221
,
238
(
1996
).
10.
T.
Yamada
,
K.
Ogaki
,
S.
Okubo
, and
K.
Itaya
,
Surf. Sci.
369
,
321
(
1996
).
11.
E. D.
Specht
,
A.
Mak
,
C.
Peters
,
M.
Sutton
,
R. J.
Birgeneau
,
K. L.
D’Amico
,
D. E.
Moncton
,
S. E.
Nagler
, and
P. M.
Horn
,
Z. Phys. B: Condens. Matter
69
,
347
(
1987
).
12.
M. D.
Chinn
and
S. C.
Fain
,
Phys. Rev. Lett.
39
,
146
(
1977
).
13.
K.
Kern
,
R.
David
,
P.
Zeppenfeld
,
R.
Palmer
, and
G.
Comsa
,
Solid State Commun.
62
,
391
(
1987
).
14.
C. M.
Lieber
and
X. L.
Wu
,
Acc. Chem. Res.
24
,
170
(
1991
).
15.
B. V.
Andryushechkin
,
G. M.
Zhidomirov
,
K. N.
Eltsov
,
Y. V.
Hladchanka
, and
A. A.
Korlyukov
,
Phys. Rev. B
80
,
125409
(
2009
).
16.
M. C.
Lucking
,
W.
Xie
,
D.-H.
Choe
,
D.
West
,
T.-M.
Lu
, and
S. B.
Zhang
,
Phys. Rev. Lett.
120
,
086101
(
2018
).
17.
E. R.
Malinowski
and
D. G.
Howery
,
Factor Analysis in Chemistry
(
Wiley
,
New York
,
1980
), p.
432
.
18.
S. W.
Gaarenstroom
,
J. Vac. Sci. Technol.
20
,
458
(
1982
).
19.
I.
Horcas
,
R.
Fernández
,
J. M.
Gómez-Rodríguez
,
J.
Colchero
,
J.
Gómez-Herrero
, and
A. M.
Baro
,
Rev. Sci. Instrum.
78
,
013705
(
2007
).
20.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
21.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
22.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
23.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
24.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
26.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
27.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
28.
D. E. P.
Vanpoucke
and
G.
Brocks
,
Phys. Rev. B
77
,
241308
(
2008
).
29.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
30.
A.
Gavezzotti
,
J. Am. Chem. Soc.
105
,
5220
(
1983
).
31.
R.
Chauvin
,
J. Phys. Chem.
96
,
9194
(
1992
).
32.
P.
Zeppenfeld
,
K.
Kern
,
R.
David
, and
G.
Comsa
,
Phys. Rev. B
38
,
3918
(
1988
).
33.
T.
Müller
,
D.
Heuer
,
H.
Pfnür
, and
U.
Köhler
,
Surf. Sci.
347
,
80
(
1996
).
34.
R.
Dennert
,
M.
Sokolowski
, and
H.
Pfnür
,
Surf. Sci.
271
,
1
(
1992
).
35.
Y.
Wang
,
W.
Wang
,
K.
Fan
, and
J.
Deng
,
Surf. Sci.
487
,
77
(
2001
).
36.
B. V.
Andryushechkin
,
K. N.
Eltsov
, and
V. M.
Shevlyuga
,
Surf. Sci.
566–568
,
203
(
2004
).
37.
B. V.
Andryushechkin
,
K. N.
Eltsov
, and
V. V.
Cherkez
,
JETP Lett.
83
,
162
(
2006
).
38.
N. S.
Komarov
,
T. V.
Pavlova
, and
B. V.
Andryushechkin
,
Phys. Chem. Chem. Phys.
23
,
1896
(
2021
).
39.
N. S.
Komarov
,
T. V.
Pavlova
, and
B. V.
Andryushechkin
,
J. Phys. Chem. C
123
,
27659
(
2019
).
40.
R. W. G.
Wyckoff
,
Crystal Structures
(
Wiley
,
1963
).
41.
I. F.
Lyuksyutov
,
A. G.
Naumovets
, and
V. L.
Pokrovsky
,
Two-Dimensional Crystals
(
Academic Press
,
Boston
,
1992
).
42.
43.
K.
Kern
and
G.
Comsa
,
Modulated Structures of Adsorbed Rare Gas Monolayers
(
Plenum Press
,
New York
,
1991
), pp.
41
65
.
44.
M.
den Nijs
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J.
Lebowitz
(
Academic Press
,
1988
), Vol. 12, pp.
219
333
.
45.
H.
Freimuth
,
H.
Wiechert
,
H. P.
Schildberg
, and
H. J.
Lauter
,
Phys. Rev. B
42
,
587
(
1990
).
46.
J.
Cui
and
S. C.
Fain
,
Phys. Rev. B
39
,
8628
(
1989
).
47.
O. M.
Braun
and
Y.
Kivshar
,
The Frenkel-Kontorova Model: Concepts, Methods, and Applications
(
Springer-Verlag
,
Berlin
,
2004
), p.
472
.
48.
B. V.
Andryushechkin
,
K. N.
Eltsov
, and
V. M.
Shevlyuga
,
Surf. Sci.
470
,
L63
(
2000
).
49.
B. V.
Andryushechkin
,
K. N.
Eltsov
, and
V. M.
Shevlyuga
,
Surf. Sci.
472
,
80
(
2001
).
50.
B. V.
Andryushechkin
,
V. V.
Cherkez
,
B.
Kierren
,
Y.
Fagot-Revurat
,
D.
Malterre
, and
K. N.
Eltsov
,
Phys. Rev. B
84
,
205422
(
2011
).
51.
N. S.
Komarov
,
T. V.
Pavlova
, and
B. V.
Andryushechkin
,
Surf. Sci.
651
,
112
(
2016
).
52.
L.
Huang
,
P.
Zeppenfeld
,
S.
Horch
, and
G.
Comsa
,
J. Chem. Phys.
107
,
585
(
1997
).
53.
R. G.
Jones
and
M.
Kadodwala
,
Surf. Sci.
370
,
L219
(
1997
).
54.
W.
Erley
and
H.
Wagner
,
Surf. Sci.
66
,
371
(
1977
).
55.
D. L.
Doering
and
S.
Semancik
,
Surf. Sci. Lett.
175
,
L730
(
1986
).
56.
S.
Horch
,
P.
Zeppenfeld
, and
G.
Comsa
,
Appl. Phys. A
60
,
147
(
1995
).
57.
F.
Brunet
,
R.
Schaub
,
S.
Fédrigo
,
R.
Monot
,
J.
Buttet
, and
W.
Harbich
,
Surf. Sci.
512
,
201
(
2002
).
59.
B.
Grimm
,
H.
Hövel
,
M.
Pollmann
, and
B.
Reihl
,
Phys. Rev. Lett.
83
,
991
(
1999
).
60.
A. D.
Novaco
and
J. P.
McTague
,
Phys. Rev. Lett.
38
,
1286
(
1977
).
61.
D. L.
Doering
,
J. Vac. Sci. Technol. A
3
,
809
(
1985
).
62.
H.
Shiba
,
J. Phys. Soc. Jpn.
46
,
1852
(
1979
).
63.
X.
Huang
,
L.
Yan
,
Y.
Zhou
,
Y.
Wang
,
H.-Z.
Song
, and
L.
Zhou
,
J. Phys. Chem. Lett.
12
,
525
(
2021
).
64.
C. Y.
Nakakura
and
E. I.
Altman
,
Surf. Sci.
424
,
244
(
1999
).
65.
N. T. M.
Hai
,
S.
Huemann
,
R.
Hunger
,
W.
Jaegermann
,
K.
Wandelt
, and
P.
Broekmann
,
J. Phys. Chem. C
111
,
14768
(
2007
).
66.
P.
Broekmann
,
N. T. M.
Hai
, and
K.
Wandelt
,
J. Appl. Electrochem.
36
,
1241
(
2006
).
67.
P.
Broekmann
,
N. T. M.
Hai
, and
K.
Wandelt
,
Surf. Sci.
600
,
3971
(
2006
).
68.
M.
Dreyer
,
J.
Murray
,
E.
Frederick
, and
R. E.
Butera
,
Surf. Sci.
721
,
122081
(
2022
).

Supplementary Material

You do not currently have access to this content.