The spatiotemporal correlations of the local stress tensor in supercooled liquids are studied both theoretically and by molecular dynamics simulations of a two-dimensional (2D) polydisperse Lennard-Jones system. Asymptotically exact theoretical equations defining the dynamical structure factor and all components of the stress correlation tensor for low wave-vector q are presented in terms of the generalized (q-dependent) shear and longitudinal relaxation moduli, G(q, t) and K(q, t). We developed a rigorous approach (valid for low q) to calculate K(q, t) in terms of certain bulk correlation functions (for q = 0), the static structure factor S(q), and thermal conductivity κ. The proposed approach takes into account both the thermostatting effect and the effect of polydispersity. The theoretical results for the (q, t)-dependent stress correlation functions are compared with our simulation data, and an excellent agreement is found for qb̄0.5 (with b̄ being the mean particle diameter) both above and below the glass transition without any fitting parameters. Our data are consistent with recently predicted (both theoretically and by simulations) long-range correlations of the shear stress quenched in heterogeneous glassy structures.

1.
M.
Fuchs
,
Adv. Polym. Sci.
236
,
55
(
2010
).
2.
A.
Nicolas
,
E. E.
Ferrero
,
K.
Martens
, and
J.-L.
Barrat
,
Rev. Mod. Phys.
90
,
045006
(
2018
).
3.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
NY
,
2006
).
4.
D.
Forster
,
Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Fluctuations
(
Benjamin-Cummings
,
London
,
1983
).
5.
I.
Kriuchevskyi
,
J. P.
Wittmer
,
H.
Meyer
,
O.
Benzerara
, and
J.
Baschnagel
,
Phys. Rev. E
97
,
012502
(
2018
).
6.
L.
Klochko
,
J.
Baschnagel
,
J. P.
Wittmer
, and
A. N.
Semenov
,
Soft Matter
14
,
6835
(
2018
).
7.
J. P.
Wittmer
,
H.
Xu
,
P.
Polińska
,
F.
Weysser
, and
J.
Baschnagel
,
J. Chem. Phys.
138
,
12A533
(
2013
).
8.
J. P.
Wittmer
,
H.
Xu
,
O.
Benzerara
, and
J.
Baschnagel
,
Mol. Phys.
113
,
2881
(
2015
).
9.
L.
Klochko
,
J.
Baschnagel
,
J. P.
Wittmer
, and
A. N.
Semenov
,
J. Chem. Phys.
151
,
054504
(
2019
).
10.
L.
Klochko
,
J.
Baschnagel
,
J. P.
Wittmer
, and
A. N.
Semenov
,
Soft Matter
17
,
7867
(
2021
).
11.
G.
George
,
L.
Klochko
,
A. N.
Semenov
,
J.
Baschnagel
, and
J. P.
Wittmer
,
Eur. Phys. J. E
44
,
13
(
2021
).
12.
H.
Xu
,
J. P.
Wittmer
,
P.
Polińska
, and
J.
Baschnagel
,
Phys. Rev. E
86
,
046705
(
2012
).
13.
J. P.
Wittmer
,
H.
Xu
,
P.
Polińska
,
F.
Weysser
, and
J.
Baschnagel
,
J. Chem. Phys.
138
,
191101
(
2013
).
14.

KT(t), KA(t) are universal functions by their definition, implying a perfect temperature adjustment to keep constant either T or the entropy S. Therefore, KT(t) or KA(t) cannot be directly obtained by, say, simulations with imperfect thermostats (allowing for some undefined T-variations). Still, they can be calculated even in this case based on the non-universal correlation functions, but it requires application of certain transformations to the correlation data, as described in Ref. 10. By contrast, this problem is absent for G(q, t) since shear stress fluctuations are insensitive to small T-variations.

15.
J. L.
Lebowitz
,
J. K.
Percus
, and
L.
Verlet
,
Phys. Rev.
153
,
250
(
1967
).
16.
L.
Klochko
,
J.
Baschnagel
,
J. P.
Wittmer
, and
A. N.
Semenov
,
J. Chem. Phys.
154
,
164501
(
2021
).
17.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature
410
,
259
(
2001
).
18.
F.
Vogel
and
M.
Fuchs
,
Eur. Phys. J. E
43
,
70
(
2020
).
19.
M.
Maier
,
A.
Zippelius
, and
M.
Fuchs
,
Phys. Rev. Lett.
119
,
265701
(
2017
).
20.
M.
Maier
,
A.
Zippelius
, and
M.
Fuchs
,
J. Chem. Phys.
149
,
084502
(
2018
).
21.
A.
Lemaître
,
Phys. Rev. Lett.
113
,
245702
(
2014
).
22.
A.
Lemaître
,
J. Chem. Phys.
143
,
164515
(
2015
).
23.
B.
Illing
,
S.
Fritschi
,
D.
Hajnal
,
C.
Klix
,
P.
Keim
, and
M.
Fuchs
,
Phys. Rev. Lett.
117
,
208002
(
2016
).
24.
M.
Hassani
,
E. M.
Zirdehi
,
K.
Kok
,
P.
Schall
,
M.
Fuchs
, and
F.
Varnik
,
Europhys. Lett.
124
,
18003
(
2018
).
25.
U.
Balucani
and
M.
Zoppi
,
Dynamics of the Liquid State
(
Oxford University Press
,
Oxford
,
2003
).
26.
A. N.
Semenov
,
J.
Farago
, and
H.
Meyer
,
J. Chem. Phys.
136
,
244905
(
2012
).
27.
C.
Ruscher
,
A. N.
Semenov
,
J.
Baschnagel
, and
J.
Farago
,
J. Chem. Phys.
146
,
144502
(
2017
).
28.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Pergamon Press
,
New York
,
1959
).
29.
E. B.
Tadmor
and
R. E.
Miller
,
Modeling Materials
(
Cambridge University Press
,
Cambridge
,
2011
).
30.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Fluid Mechanics
(
Wiley
,
NY
,
1987
).
31.

An alternative assumption is that the periodic boundary conditions (PBCs) are applied.

32.

Note that condition (15) does not imply any jump of σαβ(q̲,t) at t = 0+ if the center-of-mass velocity of the system is kept equal to 0.

33.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
2017
).
34.

We do not use subscript “L” in K(q, t) since a q-dependent compression can be only longitudinal; it can be isotropic only for q = 0.

35.

Here and below, the brackets 〈⋯〉 mean ensemble average supplemented with the averaging over t′, and δXXX for any X = T(t), p(t), etc.

36.
W.
Götze
and
A.
Latz
,
J. Phys.: Condens. Matter
1
,
4169
(
1989
).
37.
L. P.
Kadanoff
and
P. C.
Martin
,
Ann. Phys.
24
,
419
(
1963
).
38.

Simultaneous correlations corresponding to the time-shift t = 0 are not altered by the thermostat due to its canonical nature.

39.

Note that here we deal with nondimensional specific heat per particle, cv, which is equal to the total heat capacity of the system divided by NkB.

40.

The glass-transition temperature Tg ≈ 0.26 was determined in prior Monte Carlo (MC) and MD studies using a continuous cooling protocol with a (standard choice for the) finite cooling rate.10 Therefore, Tg corresponds to the temperature where the α-relaxation time becomes comparable to the cooling time (in the MC simulations with local moves or in MD simulations), and the system falls out of equilibrium. However, thanks to the particle-swap MC technique,58 we succeed in equilibrating our 2D pLJ system down to T = 0.16.10 Starting from these equilibrated configurations, we performed MD simulations to explore the equilibrium dynamics of the supercooled liquid, also below Tg ≈ 0.26 (cf. Ref. 10 for a detailed discussion). Here, we continue to report Tg as a relevant temperature for our model because for TTg, dynamic correlation functions show pronounced plateaux for times beyond the initial short-time relaxation. Upon cooling, these plateaux increase in length and extend over the entire sampling time of the MD simulation at low T.

41.
L.
Klochko
,
J.
Baschnagel
,
J. P.
Wittmer
,
O.
Benzerara
,
C.
Ruscher
, and
A. N.
Semenov
,
Phys. Rev. E
102
,
042611
(
2020
).
42.

The importance of interdiffusion processes for glass-forming systems with size polydispersity was discussed in Ref. 61 and for binary mixtures in the framework of mode-coupling theory in Ref. 62. However, the general form of the magnitude of the interdiffusion term [cf. prefactor in Eq. (52)] was not recognized there.

43.

Macroscopic isotropy of the studied systems was demonstrated in Ref. 10.

44.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
NY
,
2009
).
45.

Note that the agreement at long times slightly deteriorates at low temperatures, TTg, which is a natural effect of the poorer statistics in the regime of long structural relaxation time τα.

46.

Note that time-dependence of heat capacity cv(t) is weak at t ≳ 50.41 

47.

The affine moduli μA and ηA are discussed in Ref. 10.

48.

More precisely, the rate 1/τs is equal to the real part of the smallest roots of equation ρs2/q2 + G(q, − s) = 0; cf. the denominator in the rhs of Eq. (70): 1/τs=R(s). In a similar way, 1/τL is defined by ρs2/q2 + K(q, −s) = 0; cf. the denominator in the rhs of Eq. (71).

49.

Both relations (95) and (96) assume a virtual stationarity of a well-equilibrated system within metabasin.

50.

Note that the region t ≲ 2τL provides a negligible contribution to the integral in Eq. (97) since ΔtmaxτL.

51.

Note that while Nq = 2 for all q’s we consider (with nq2 = 1, 8, 32, 64), it typically gets higher for larger q.

52.
R. M.
Puscasu
,
B. D.
Todd
,
P. J.
Daivis
, and
J. S.
Hansen
,
J. Chem. Phys.
133
,
144907
(
2010
).
53.
A.
Furukawa
and
H.
Tanaka
,
Phys. Rev. Lett.
103
,
135703
(
2009
).
54.
A.
Furukawa
and
H.
Tanaka
,
Phys. Rev. E
84
,
061503
(
2011
).
55.
R. M.
Puscasu
,
B. D.
Todd
,
P. J.
Daivis
, and
J. S.
Hansen
,
Phys. Rev. E
82
,
011801
(
2010
).
56.
A.
Tanguy
,
J. P.
Wittmer
,
F.
Leonforte
, and
J.-L.
Barrat
,
Phys. Rev. B
66
,
174205
(
2002
).
57.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
58.
A.
Ninarello
,
L.
Berthier
, and
D.
Coslovich
,
Phys. Rev. X
7
,
021039
(
2017
).
59.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
London
,
2002
).
60.
P.
Scheidler
,
W.
Kob
,
A.
Latz
,
J.
Horbach
, and
K.
Binder
,
Phys. Rev. B
63
,
104204
(
2001
).
61.
P. N.
Pusey
and
R. J. A.
Tough
,
Adv. Colloid Interface Sci.
16
,
143
(
1982
).
62.
M.
Fuchs
and
A.
Latz
,
Physica A
201
,
1
(
1993
).
You do not currently have access to this content.