A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and HOH bend intramolecular transitions of the water dimer (H216O)2. Advantages and potential pitfalls of the applied approximations are highlighted. The importance of choices related to the treatment of the kinetic energy operator in reduced-dimensional calculations and the accuracy of different water dimer PESs are discussed. A range of different reduced-dimensional computations are performed to investigate the wavenumber shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes. With the use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated, predicting accurately the experimentally observed intramolecular fundamentals. It is found that one can also predict accurate intramolecular transition wavenumbers for the water dimer by combining a set of computationally inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian treatments.

1.
M.
Van Thiel
,
E. D.
Becker
, and
G. C.
Pimentel
, “
Infrared studies of hydrogen bonding of water by the matrix isolation technique
,”
J. Chem. Phys.
27
,
486
490
(
1957
).
2.
T. R.
Dyke
,
K. M.
Mack
, and
J. S.
Muenter
, “
The structure of water dimer from molecular beam electric resonance spectroscopy
,”
J. Chem. Phys.
66
,
498
510
(
1977
).
3.
L. B.
Braly
,
J. D.
Cruzan
,
K.
Liu
,
R. S.
Fellers
, and
R. J.
Saykally
, “
Terahertz laser spectroscopy of the water dimer intermolecular vibrations. I. (D2O)2
,”
J. Chem. Phys.
112
,
10293
10313
(
2000
).
4.
S.
Kassi
,
P.
Macko
,
O.
Naumenko
, and
A.
Campargue
, “
The absorption spectrum of water near 750 nm by CW-CRDS: Contribution to the search of water dimer absorption
,”
Phys. Chem. Chem. Phys.
7
,
2460
2467
(
2005
).
5.
T.
Kumagai
,
M.
Kaizu
,
S.
Hatta
,
H.
Okuyama
,
T.
Aruga
,
I.
Hamada
, and
Y.
Morikawa
, “
Direct observation of hydrogen-bond exchange within a single water dimer
,”
Phys. Rev. Lett.
100
,
166101
(
2008
).
6.
M. Y.
Tretyakov
,
E. A.
Serov
,
M. A.
Koshelev
,
V. V.
Parshin
, and
A. F.
Krupnov
, “
Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature
,”
Phys. Rev. Lett.
110
,
093001
(
2013
).
7.
E. A.
Serov
,
M. A.
Koshelev
,
T. A.
Odintsova
,
V. V.
Parshin
, and
M. Y.
Tretyakov
, “
Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188–258 GHz range
,”
Phys. Chem. Chem. Phys.
16
,
26221
26233
(
2014
).
8.
A.
Mukhopadhyay
,
W. T. S.
Cole
, and
R. J.
Saykally
, “
The water dimer. I. Experimental characterization
,”
Chem. Phys. Lett.
633
,
13
26
(
2015
).
9.
R.
Schwan
,
C.
Qu
,
D.
Mani
,
N.
Pal
,
L.
Meer
,
B.
Redlich
,
C.
Leforestier
,
J. M.
Bowman
,
G.
Schwaab
, and
M.
Havenith
, “
Observation of the low-frequency spectrum of the water dimer as a sensitive test of the water dimer potential and dipole moment surfaces
,”
Angew. Chem., Int. Ed.
58
,
13119
13126
(
2019
).
10.
K.
Morokuma
and
L.
Pedersen
, “
Molecular-orbital studies of hydrogen bonds. An ab initio calculation for dimeric H2O
,”
J. Chem. Phys.
48
,
3275
(
1967
).
11.
D. F.
Coker
and
R. O.
Watts
, “
Structure and vibrational spectroscopy of the water dimer using quantum simulation
,”
J. Phys. Chem.
91
,
2513
2518
(
1987
).
12.
N.
Goldman
,
R. S.
Fellers
,
M. G.
Brown
,
L. B.
Braly
,
C. J.
Keoshian
,
C.
Leforestier
, and
R. J.
Saykally
, “
Spectroscopic determination of the water dimer intermolecular potential-energy surface
,”
J. Chem. Phys.
116
,
10148
10163
(
2002
).
13.
D. P.
Schofield
and
H. G.
Kjaergaard
, “
Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer
,”
Phys. Chem. Chem. Phys.
5
,
3100
3105
(
2003
).
14.
Y.
Scribano
,
N.
Goldman
,
R. J.
Saykally
, and
C.
Leforestier
, “
Water dimers in the atmosphere. III. Equilibrium constant from a flexible potential
,”
J. Phys. Chem. A
110
,
5411
5419
(
2006
).
15.
D. P.
Schofield
,
J. R.
Lane
, and
H. G.
Kjaergaard
, “
Hydrogen bonded OH-stretching vibration in the water dimer
,”
J. Phys. Chem. A
111
,
567
572
(
2007
).
16.
X.
Huang
,
B. J.
Braams
,
J. M.
Bowman
,
R. E. A.
Kelly
,
J.
Tennyson
,
G. C.
Groenenboom
, and
A.
van der Avoird
, “
New ab initio potential energy surface and the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2
,”
J. Chem. Phys.
128
,
034312
(
2008
).
17.
A.
Shank
,
Y.
Wang
,
A.
Kaledin
,
B. J.
Braams
, and
J. M.
Bowman
, “
Accurate ab initio and ‘hybrid’ potential energy surfaces, intramolecular vibrational energies, and classical IR spectrum of the water dimer
,”
J. Chem. Phys.
130
,
144314
(
2009
).
18.
Y.
Wang
,
X.
Huang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
, “
Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer
,”
J. Chem. Phys.
134
,
094509
(
2011
).
19.
C.
Leforestier
,
K.
Szalewicz
, and
A.
van der Avoird
, “
Spectra of water dimer from a new ab initio potential with flexible monomers
,”
J. Chem. Phys.
137
,
014305
(
2012
).
20.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
21.
J. C.
Howard
,
J. L.
Gray
,
A. J.
Hardwick
,
L. T.
Nguyen
, and
G. S.
Tschumper
, “
Getting down to the fundamentals of hydrogen bonding: Anharmonic vibrational frequencies of (HF)2 and (H2O)2 from ab initio electronic structure computations
,”
J. Chem. Theory Comput.
10
,
5426
5435
(
2014
).
22.
K.
Mackeprang
,
H. G.
Kjaergaard
,
T.
Salmi
,
V.
Hänninen
, and
L.
Halonen
, “
The effect of large amplitude motions on the transition frequency redshift in hydrogen bonded complexes: A physical picture
,”
J. Chem. Phys.
140
,
184309
(
2014
).
23.
P.
Jankowski
,
G.
Murdachaew
,
R.
Bukowski
,
O.
Akin-Ojo
,
C.
Leforestier
, and
K.
Szalewicz
, “
Ab initio water pair potential with flexible monomers
,”
J. Phys. Chem. A
119
,
2940
2964
(
2015
).
24.
K.
Mackeprang
,
V.
Hänninen
,
L.
Halonen
, and
H. G.
Kjaergaard
, “
The effect of large amplitude motions on the vibrational intensities in hydrogen bonded complexes
,”
J. Chem. Phys.
142
,
094304
(
2015
).
25.
A.
Mukhopadhyay
,
S. S.
Xantheas
, and
R. J.
Saykally
, “
The water dimer. II. Theoretical investigations
,”
Chem. Phys. Lett.
700
,
163
175
(
2018
).
26.
C. L.
Vaillant
,
D. J.
Wales
, and
S. C.
Althorpe
, “
Tunneling splittings from path-integral molecular dynamics using a Langevin thermostat
,”
J. Chem. Phys.
148
,
234102
(
2018
).
27.
X.-G.
Wang
and
T.
Carrington
, “
Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer
,”
J. Chem. Phys.
148
,
074108
(
2018
).
28.
M. P.
Metz
,
K.
Szalewicz
,
J.
Sarka
,
R.
Tóbiás
,
A. G.
Császár
, and
E.
Mátyus
, “
Molecular dimers of methane clathrates: Ab initio potential energy surfaces and variational vibrational states
,”
Phys. Chem. Chem. Phys.
21
,
13504
13525
(
2019
).
29.
A.
Nandi
,
C.
Qu
,
P. L.
Houston
,
R.
Conte
,
Q.
Yu
, and
J. M.
Bowman
, “
A CCSD(T)-based 4-body potential for water
,”
J. Phys. Chem. Lett.
12
,
10318
10324
(
2021
).
30.
L.
Pauling
,
The Nature of the Chemical Bond
(
Cornwall University Press
,
New York
,
1939
).
31.
H. C.
Longuet-Higgins
, “
The symmetry groups of non-rigid molecules
,”
Mol. Phys.
6
,
445
460
(
1963
).
32.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
Ottawa
,
2006
).
33.
G. R.
Low
and
H. G.
Kjaergaard
, “
Calculation of OH-stretching band intensities of the water dimer and trimer
,”
J. Chem. Phys.
110
(
18
),
9104
9115
(
1999
).
34.
E.
Vogt
and
H. G.
Kjaergaard
, “
Vibrational spectroscopy of the water dimer at jet-cooled and atmospheric temperatures
,”
Annu. Rev. Phys. Chem.
73
,
209
231
(
2022
).
35.
E.
Sälli
,
T.
Salmi
, and
L.
Halonen
, “
Computational high-frequency overtone spectra of the water–ammonia complex
,”
J. Phys. Chem. A
115
,
11594
11605
(
2011
).
36.
E.
Mátyus
,
G.
Czakó
, and
A. G.
Császár
, “
Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations
,”
J. Chem. Phys.
130
,
134112
(
2009
).
37.
C.
Fábri
,
E.
Mátyus
, and
A. G.
Császár
, “
Rotating full- and reduced-dimensional quantum chemical models of molecules
,”
J. Chem. Phys.
134
,
074105
(
2011
).
38.
C.
Fábri
,
M.
Quack
, and
A. G.
Császár
, “
On the use of nonrigid-molecular symmetry in nuclear-motion computations employing a discrete variable representation: A case study of the bending energy levels of CH5+
,”
J. Chem. Phys.
147
,
134101
(
2017
).
39.
B.
Podolsky
, “
Quantum-mechanically correct form of Hamiltonian function for conservative systems
,”
Phys. Rev.
32
,
812
816
(
1928
).
40.
E. B.
Wilson
, Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
McGraw-Hill
,
New York
,
1955
).
41.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
, “
A simple and efficient CCSD(T)-F12 approximation
,”
J. Chem. Phys.
127
,
221106
(
2007
).
42.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
, “
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
,”
J. Chem. Phys.
128
,
084102
(
2008
).
43.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
44.
T. R.
Dyke
, “
Group theoretical classification of the tunneling–rotational energy levels of water dimer
,”
J. Chem. Phys.
66
,
492
497
(
1977
).
45.
P. M.
Felker
and
Z.
Bačić
, “
Weakly bound molecular dimers: Intramolecular vibrational fundamentals, overtones, and tunneling splittings from full-dimensional quantum calculations using compact contracted bases of intramolecular and low-energy rigid-monomer intermolecular eigenstates
,”
J. Chem. Phys.
151
(
2
),
024305
(
2019
).
46.
A. G.
Császár
,
C.
Fábri
,
T.
Szidarovszky
,
E.
Mátyus
,
T.
Furtenbacher
, and
G.
Czakó
, “
The fourth age of quantum chemistry: Molecules in motion
,”
Phys. Chem. Chem. Phys.
14
,
1085
1106
(
2012
).
47.
D. O.
Harris
,
G. G.
Engerholm
, and
W. D.
Gwinn
, “
Calculation of matrix elements for one-dimensional quantum-mechanical problems and the application to anharmonic oscillators
,”
J. Chem. Phys.
43
,
1515
1517
(
1965
).
48.
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
, “
Discrete variable representations and sudden models in quantum scattering theory
,”
Chem. Phys. Lett.
89
,
483
489
(
1982
).
49.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
, “
Generalized discrete variable approximation in quantum mechanics
,”
J. Chem. Phys.
82
,
1400
1409
(
1985
).
50.
Z.
Bačić
and
J. C.
Light
, “
Theoretical methods for rovibrational states of floppy molecules
,”
Annu. Rev. Phys. Chem.
40
,
469
498
(
1989
).
51.
V.
Szalay
, “
Discrete variable representations of differential operators
,”
J. Chem. Phys.
99
,
1978
1984
(
1993
).
52.
J. M.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
, “
Variational quantum approaches for computing vibrational energies of polyatomic molecules
,”
Mol. Phys.
106
,
2145
2182
(
2008
).
53.
C.
Lanczos
, “
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
,”
J. Res. Natl. Bur. Stand.
45
,
255
282
(
1950
).
54.
G.
Brocks
,
A.
van der Avoird
,
B. T.
Sutcliffe
, and
J.
Tennyson
, “
Quantum dynamics of non-rigid systems comprising two polyatomic fragments
,”
Mol. Phys.
50
,
1025
1043
(
1983
).
55.
H. G.
Kjaergaard
,
A. L.
Garden
,
G. M.
Chaban
,
R. B.
Gerber
,
D. A.
Matthews
, and
J. F.
Stanton
, “
Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches
,”
J. Phys. Chem. A
112
,
4324
4335
(
2008
).
56.
E.
Arunan
,
G. R.
Desiraju
,
R. A.
Klein
,
J.
Sadlej
,
S.
Scheiner
,
I.
Alkorta
,
D. C.
Clary
,
R. H.
Crabtree
,
J. J.
Dannenberg
,
P.
Hobza
,
H. G.
Kjaergaard
,
A. C.
Legon
,
B.
Mennucci
, and
D. J.
Nesbitt
, “
Definition of the hydrogen bond (IUPAC recommendations 2011)
,”
Pure Appl. Chem.
83
,
1637
1641
(
2011
).
57.
A. S.
Hansen
,
E.
Vogt
, and
H. G.
Kjaergaard
, “
Gibbs energy of complex formation–combining infrared spectroscopy and vibrational theory
,”
Int. Rev. Phys. Chem.
38
(
1
),
115
148
(
2019
).
58.
A. L.
Garden
,
L.
Halonen
, and
H. G.
Kjaergaard
, “
Calculated band profiles of the OH-stretching transitions in water dimer
,”
J. Phys. Chem. A
112
(
32
),
7439
7447
(
2008
).
59.
Z. S.
Huang
and
R. E.
Miller
, “
High-resolution near-infrared spectroscopy of water dimer
,”
J. Chem. Phys.
91
,
6613
6631
(
1989
).
60.
F.
Huisken
,
M.
Kaloudis
, and
A.
Kulcke
, “
Infrared spectroscopy of small size-selected water clusters
,”
J. Chem. Phys.
104
,
17
25
(
1996
).
61.
J. B.
Paul
,
R. A.
Provencal
,
C.
Chapo
,
K.
Roth
,
R.
Casaes
, and
R. J.
Saykally
, “
Infrared cavity ringdown spectroscopy of the water cluster bending vibrations
,”
J. Phys. Chem. A
103
,
2972
2974
(
1999
).
62.
U.
Buck
and
F.
Huisken
, “
Infrared spectroscopy of size-selected water and methanol clusters
,”
Chem. Rev.
100
,
3863
3890
(
2000
).
63.
I.
León
,
R.
Montero
,
F.
Castaño
,
A.
Longarte
, and
J. A.
Fernández
, “
Mass-resolved infrared spectroscopy of complexes without chromophore by nonresonant femtosecond ionization detection
,”
J. Phys. Chem. A
116
,
6798
6803
(
2012
).
64.
K. E.
Otto
,
Z.
Xue
,
P.
Zielke
, and
M. A.
Suhm
, “
The Raman spectrum of isolated water clusters
,”
Phys. Chem. Chem. Phys.
16
,
9849
9858
(
2014
).
65.
T. A.
Ruden
,
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
, “
Coupled-cluster connected quadruples and quintuples corrections to the harmonic vibrational frequencies and equilibrium bond distances of HF, N2, F2, and CO
,”
J. Chem. Phys.
121
,
5874
5884
(
2004
).
66.
G.
Rauhut
,
G.
Knizia
, and
H.-J.
Werner
, “
Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory
,”
J. Chem. Phys.
130
,
054105
(
2009
).
67.
J. R.
Lane
and
H. G.
Kjaergaard
, “
XH-stretching overtone transitions calculated using explicitly correlated coupled cluster methods
,”
J. Chem. Phys.
132
(
17
),
174304
(
2010
).
68.
J. H.
Frederick
and
C.
Woywod
, “
General formulation of the vibrational kinetic energy operator in internal bond-angle coordinates
,”
J. Chem. Phys.
111
,
7255
7271
(
1999
).

Supplementary Material

You do not currently have access to this content.