The aim of this article is to analyze from a mathematical perspective some existing schemes to partition a molecular density into several atomic contributions with a specific focus on Iterative Stockholder Atom (ISA) methods. We provide a unified mathematical framework to describe the latter family of methods and propose a new scheme, named L-ISA (for linear approximation of ISA), which generalizes the so-called additive variational Hirshfeld method. We prove several important mathematical properties of the ISA and L-ISA minimization problems and show that the so-called ISA algorithms can be viewed as alternating minimization schemes, which, in turn, enables us to obtain new convergence results for these numerical methods. Specific mathematical properties of the ISA decomposition for diatomic systems are also presented. Numerical results on diatomic systems illustrate the proven mathematical properties.

1.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
(
13
),
6158
6170
(
1999
).
2.
P. W.
Ayers
, “
Atoms in molecules, an axiomatic approach. I. maximum transferability
,”
J. Chem. Phys.
113
(
24
),
10886
10898
(
2000
).
3.
R. F. W.
Bader
and
P. M.
Beddall
, “
Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties
,”
J. Chem. Phys.
56
(
7
),
3320
3329
(
1972
).
4.
R. F. W.
Bader
,
Atoms in Molecules. A Quantum Theory
(
Clarendon Press
,
1994
).
5.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
(
40
),
10269
10280
(
1993
).
6.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
(
4
),
2547
2553
(
1988
).
7.
R.
Benda
, “
Modélisation multi-échelle de nano-capteurs à base de polymères conjugués pour la qualité de l’eau
,”
Ph.D. thesis
,
Institut Polytechnique de Paris
,
2021
.
8.
R.
Benda
,
E.
Cancès
,
V.
Ehrlacher
, and
B.
Stamm
(
2022
). “
DMA
,”
Github.
https://github.com/rbenda/dma_multipoles.
9.
P.
Bultinck
,
P. W.
Ayers
,
S.
Fias
,
K.
Tiels
, and
C.
Van Alsenoy
, “
Uniqueness and basis set dependence of iterative Hirshfeld charges
,”
Chem. Phys. Lett.
444
(
1-3
),
205
208
(
2007
).
10.
P.
Bultinck
,
C.
Van Alsenoy
,
P. W.
Ayers
, and
R.
Carbó-Dorca
, “
Critical analysis and extension of the Hirshfeld atoms in molecules
,”
J. Chem. Phys.
126
(
14
),
144111
(
2007
).
11.
C.
Chipot
,
J. G.
Angyan
,
G. G.
Ferenczy
, and
H. A.
Scheraga
, “
Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties: A case study of saturated hydrocarbons
,”
J. Phys. Chem.
97
(
25
),
6628
6636
(
1993
).
12.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
(
19
),
5179
5197
(
1995
).
13.
M. S.
Engler
,
B.
Caron
,
L.
Veen
,
D. P.
Geerke
,
A. E.
Mark
, and
G. W.
Klau
, “
Multiple-choice knapsack for assigning partial atomic charges in drug-like molecules
,” in
18th International Workshop on Algorithms in Bioinformatics (WABI 2018), Volume 113 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2018
, edited by
L.
Parida
and
E.
Ukkonen
(
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
), pp.
16:1
16:13
.
14.
G. G.
Ferenczy
, “
Charges derived from distributed multipole series
,”
J. Comput. Chem.
12
(
8
),
913
917
(
1991
).
15.
G. G.
Ferenczy
,
P. J.
Winn
, and
C. A.
Reynolds
, “
Toward improved force fields. 2. Effective distributed multipoles
,”
J. Phys. Chem. A
101
(
30
),
5446
5455
(
1997
).
16.
P.
Fortin
, “
Algorithmique hiérarchique parallèle haute performance pour les problèmes à N-corps
,”
Ph.D. thesis
,
Université Sciences et Technologies-Bordeaux I
,
2006
.
17.
S.
Fournais
,
M.
Hoffmann-Ostenhof
,
T.
Hoffmann-Ostenhof
, and
T.
Østergaard Sørensen
, “
The electron density is smooth away from the nuclei
,”
Commun. Math. Phys.
228
,
401
415
(
2002
).
18.
S.
Fournais
,
M.
Hoffmann-Ostenhof
,
T.
Hoffmann-Ostenhof
, and
T.
Østergaard Sørensen
, “
Analyticity of the density of electronic wavefunctions
,”
Ark. Mat.
42
(
1
),
87
106
(
2004
).
19.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16 Revision C.01,
Gaussian Inc
,
Wallingford, CT
,
2016
.
20.
D.
Goldfarb
and
A.
Idnani
, “
Dual and primal-dual methods for solving strictly convex quadratic programs
,” in
Numerical Analysis
(
Springer
,
1982
), pp.
226
239
.
21.
D.
Goldfarb
and
A.
Idnani
, “
A numerically stable dual method for solving strictly convex quadratic programs
,”
Math. Program.
27
(
1
),
1
33
(
1983
).
22.
F.
Heidar-Zadeh
,
P. W.
Ayers
, and
P.
Bultinck
, “
Deriving the Hirshfeld partitioning using distance metrics
,”
J. Chem. Phys.
141
(
9
),
094103
(
2014
).
23.
F.
Heidar-Zadeh
,
P. W.
Ayers
,
T.
Verstraelen
,
I.
Vinogradov
,
E.
Vöhringer-Martinez
, and
P.
Bultinck
, “
Information-theoretic approaches to atoms-in-molecules: Hirshfeld family of partitioning schemes
,”
J. Phys. Chem. A
122
(
17
),
4219
4245
(
2017
).
24.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
(
2
),
129
138
(
1977
).
25.
F. L.
Hirshfeld
, “
XVII. Spatial partitioning of charge density
,”
Isr. J. Chem.
16
(
2-3
),
198
201
(
1977
).
26.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
(
3B
),
B864
(
1964
).
27.
T.
Jecko
, “
On the analyticity of electronic reduced densities for molecules
,”
J. Math. Phys.
63
(
1
),
013509
(
2022
).
28.
F.
Jensen
,
Introduction to Computational Chemistry
(
John Wiley & Sons
,
2017
).
29.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
30.
T. C.
Lillestolen
and
R. J.
Wheatley
, “
Redefining the atom: Atomic charge densities produced by an iterative stockholder approach
,”
Chem. Commun.
45
,
5909
5911
(
2008
).
31.
T. C.
Lillestolen
and
R. J.
Wheatley
, “
Atomic charge densities generated using an iterative stockholder procedure
,”
J. Chem. Phys.
131
(
14
),
144101
(
2009
).
32.
C.
Liu
,
J.-P.
Piquemal
, and
P.
Ren
, “
AMOEBA+ classical potential for modeling molecular interactions
,”
J. Chem. Theory Comput.
15
(
7
),
4122
4139
(
2019
).
33.
P. O.
Löwdin
, “
Approximate formulas for many-center integrals in the theory of molecules and crystals
,”
J. Chem. Phys.
21
(
2
),
374
375
(
1953
).
34.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F. A.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
 et al, “
Psi4: An open-source ab initio electronic structure program
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
4
),
556
565
(
2012
).
35.
A. D.
MacKerell
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
(
18
),
3586
3616
(
1998
).
36.
E.
Maslen
and
M.
Spackman
, “
Atomic charges and electron density partitioning
,”
Aust. J. Phys.
38
(
3
),
273
288
(
1985
).
37.
A. J.
Misquitta
,
A. J.
Stone
, and
F.
Fazeli
, “
Distributed multipoles from a robust basis-space implementation of the iterated stockholder atoms procedure
,”
J. Chem. Theory Comput.
10
(
12
),
5405
5418
(
2014
).
38.
R. S.
Mulliken
, “
Electronic population analysis on LCAO–MO molecular wave functions. I
,”
J. Chem. Phys.
23
(
10
),
1833
1840
(
1955
).
39.
R. F.
Nalewajski
and
R. G.
Parr
, “
Information theory, atoms in molecules, and molecular similarity
,”
Proc. Natl. Acad. Sci.
97
(
16
),
8879
8882
(
2000
).
40.

If the ground state is degenerate and the radial symmetry broken, ρz,n0 is chosen equal to the radially symmetric mixed-state ground-state density obtained by averaging the pure-state ground-state densities [with respect to the Haar measure of the rotation group SO(3)].

41.
N. M.
O’boyle
,
A. L.
Tenderholt
, and
K. M.
Langer
, “
cclib: A library for package-independent computational chemistry algorithms
,”
J. Comput. Chem.
29
(
5
),
839
845
(
2008
).
42.
R. G.
Parr
,
P. W.
Ayers
, and
R. F.
Nalewajski
, “
What is an atom in a molecule?
,”
J. Phys. Chem. A
109
(
17
),
3957
3959
(
2005
).
43.
D. A.
Pearlman
,
D. A.
Case
,
J. W.
Caldwell
,
W. S.
Ross
,
T. E.
Cheatham
,
S.
DeBolt
,
D.
Ferguson
,
S.
George
, and
P.
Kollman
, “
AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules
,”
Comput. Phys. Commun.
91
(
1-3
),
1
41
(
1995
).
44.
J. A.
Rackers
,
Q.
Wang
,
C.
Liu
,
J.-P.
Piquemal
,
P.
Ren
, and
J. W.
Ponder
, “
An optimized charge penetration model for use with the AMOEBA force field
,”
Phys. Chem. Chem. Phys.
19
(
1
),
276
291
(
2017
).
45.
P.
Ren
and
J. W.
Ponder
, “
Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations
,”
J. Comput. Chem.
23
(
16
),
1497
1506
(
2002
).
46.
P.
Ren
and
J. W.
Ponder
, “
Polarizable atomic multipole water model for molecular mechanics simulation
,”
J. Phys. Chem. B
107
(
24
),
5933
5947
(
2003
).
47.
P.
Ren
,
C.
Wu
, and
J. W.
Ponder
, “
Polarizable atomic multipole-based molecular mechanics for organic molecules
,”
J. Chem. Theory Comput.
7
(
10
),
3143
3161
(
2011
).
48.
C. A.
Reynolds
,
J. W.
Essex
, and
W. G.
Richards
, “
Atomic charges for variable molecular conformations
,”
J. Am. Chem. Soc.
114
(
23
),
9075
9079
(
1992
).
49.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, “
General atomic and molecular electronic structure system
,”
J. Comput. Chem.
14
(
11
),
1347
1363
(
1993
).
50.
W. R. P.
Scott
,
P. H.
Hünenberger
,
I. G.
Tironi
,
A. E.
Mark
,
S. R.
Billeter
,
J.
Fennen
,
A. E.
Torda
,
T.
Huber
,
P.
Krüger
, and
W. F.
van Gunsteren
, “
The GROMOS biomolecular simulation program package
,”
J. Phys. Chem. A
103
(
19
),
3596
3607
(
1999
).
51.
Y.
Shi
,
Z.
Xia
,
J.
Zhang
,
R.
Best
,
C.
Wu
,
J. W.
Ponder
, and
P.
Ren
, “
Polarizable atomic multipole-based AMOEBA force field for proteins
,”
J. Chem. Theory Comput.
9
(
9
),
4046
4063
(
2013
).
52.
U. C.
Singh
and
P. A.
Kollman
, “
An approach to computing electrostatic charges for molecules
,”
J. Comput. Chem.
5
(
2
),
129
145
(
1984
).
53.
J. A.
Stone
, “
Distributed multipole analysis, or how to describe a molecular charge distribution
,”
Chem. Phys. Lett.
83
(
2
),
233
239
(
1981
).
54.
A. J.
Stone
, “
Distributed multipole analysis: Stability for large basis sets
,”
J. Chem. Theory Comput.
1
(
6
),
1128
1132
(
2005
).
55.
A. J.
Stone
and
M.
Alderton
, “
Distributed multipole analysis
,”
Mol. Phys.
56
(
5
),
1047
1064
(
1985
).
56.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
D.
James
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
 et al, “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
57.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
 et al, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
(
2
),
024109
(
2020
).
58.
T.
Verstraelen
,
P. W.
Ayers
,
V.
Van Speybroeck
, and
M.
Waroquier
, “
The conformational sensitivity of iterative stockholder partitioning schemes
,”
Chem. Phys. Lett.
545
,
138
143
(
2012
).
59.
T.
Verstraelen
,
P.
Tecmer
,
F.
Heidar-Zadeh
,
K.
Boguslawski
,
M.
Chan
,
Y.
Zhao
,
T. D.
Kim
,
S.
Vandenbrande
,
D.
Yang
,
C. E.
González-Espinoza
,
S.
Fias
,
P. A.
Limacher
,
D.
Berrocal
,
A.
Malek
, and
P. W.
Ayers
(
2015
). HORTON 2.0.1, https://github.com/theochem/horton.
60.
T.
Verstraelen
,
S.
Vandenbrande
,
F.
Heidar-Zadeh
,
L.
Vanduyfhuys
,
V.
Van Speybroeck
,
M.
Waroquier
, and
P. W.
Ayers
, “
Minimal basis iterative stockholder: Atoms in molecules for force-field development
,”
J. Chem. Theory Comput.
12
(
8
),
3894
3912
(
2016
).
61.
F.
Vigné-Maeder
and
P.
Claverie
, “
The exact multicenter multipolar part of a molecular charge distribution and its simplified representations
,”
J. Chem. Phys.
88
(
8
),
4934
4948
(
1988
).
62.
P. J.
Winn
,
G. G.
Ferenczy
, and
C. A.
Reynolds
, “
Toward improved force fields. 1. Multipole-derived atomic charges
,”
J. Phys. Chem. A
101
(
30
),
5437
5445
(
1997
).
63.
J. C.
Wu
,
G.
Chattree
, and
P.
Ren
, “
Automation of AMOEBA polarizable force field parameterization for small molecules
,”
Theor. Chem. Acc.
131
(
3
),
1138
(
2012
).
64.
H.
Zadeh
, “
Variational information-theoretic atoms-in-molecules
,”
Ph.D. thesis
,
McMaster University and University of Ghent
,
2017
.

Supplementary Material

You do not currently have access to this content.