Exciton condensation, a Bose–Einstein condensation of excitons into a single quantum state, has recently been achieved in low-dimensional materials including twin layers of graphene and van der Waals heterostructures. Here, we computationally examine the beginnings of exciton condensation in a double layer composed of coronene, a seven-benzene-ring patch of graphene. As a function of interlayer separation, we compute the exciton population in a single coherent quantum state, showing that the population peaks around 1.8 at distances near 2 Å. Visualization reveals interlayer excitons at the separation distance of the condensate. We determine the exciton population as a function of the twist angle between two coronene layers to reveal the magic angles at which the condensation peaks. As with previous recent calculations showing some exciton condensation in hexacene double layers and benzene stacks, the present two-electron reduced-density-matrix calculations with coronene provide computational evidence for the ability to realize exciton condensation in molecular-scale analogs of extended systems such as the graphene double layer.

1.
M.
Kellogg
,
J. P.
Eisenstein
,
L. N.
Pfeiffer
, and
K. W.
West
, “
Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system
,”
Phys. Rev. Lett.
93
,
036801
(
2004
).
2.
E.
Tutuc
,
M.
Shayegan
, and
D. A.
Huse
, “
Counterflow measurements in strongly correlated GaAs hole bilayers: Evidence for electron-hole pairing
,”
Phys. Rev. Lett.
93
,
36802
(
2004
).
3.
D. V.
Fil
and
S. I.
Shevchenko
, “
Electron-hole superconductivity (review)
,”
Low Temp. Phys.
44
,
867
909
(
2018
).
4.
A.
Kogar
,
M. S.
Rak
,
S.
Vig
,
A. A.
Husain
,
F.
Flicker
,
Y. I.
Joe
,
L.
Venema
,
G. J.
MacDougall
,
T. C.
Chiang
,
E.
Fradkin
,
J.
van Wezel
, and
P.
Abbamonte
, “
Signatures of exciton condensation in a transition metal dichalcogenide
,”
Science
358
,
1314
1317
(
2017
).
5.
X.
Liu
,
K.
Watanabe
,
T.
Taniguchi
,
B. I.
Halperin
, and
P.
Kim
, “
Quantum Hall drag of exciton condensate in graphene
,”
Nat. Phys.
13
,
746
750
(
2017
).
6.
D.
Varsano
,
S.
Sorella
,
D.
Sangalli
,
M.
Barborini
,
S.
Corni
,
E.
Molinari
, and
M.
Rontani
, “
Carbon nanotubes as excitonic insulators
,”
Nat. Commun.
8
,
1461
(
2017
).
7.
M. S.
Fuhrer
and
A. R.
Hamilton
, “
Chasing the exciton condensate
,”
Physics
9
,
80
(
2016
).
8.
S.
Safaei
and
D. A.
Mazziotti
, “
Quantum signature of exciton condensation
,”
Phys. Rev. B
98
,
045122
(
2018
).
9.
L. M.
Sager
,
S.
Safaei
, and
D. A.
Mazziotti
, “
Potential coexistence of exciton and fermion-pair condensations
,”
Phys. Rev. B
101
,
081107
(
2020
).
10.
L. M.
Sager
,
S. E.
Smart
, and
D. A.
Mazziotti
, “
Preparation of an exciton condensate of photons on a 53-qubit quantum computer
,”
Phys. Rev. Res.
2
(
4
),
043205
(
2020
).
11.
A. O.
Schouten
,
L. M.
Sager
, and
D. A.
Mazziotti
, “
Exciton condensation in molecular-scale van der Waals stacks
,”
J. Phys. Chem. Lett.
12
,
9906
9911
(
2021
).
12.
I. B.
Spielman
,
J. P.
Eisenstein
,
L. N.
Pfeiffer
, and
K. W.
West
, “
Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet
,”
Phys. Rev. Lett.
84
,
5808
5811
(
2000
).
13.
M.
Kellogg
,
I. B.
Spielman
,
J. P.
Eisenstein
,
L. N.
Pfeiffer
, and
K. W.
West
, “
Observation of quantized Hall drag in a strongly correlated bilayer electron system
,”
Phys. Rev. Lett.
88
,
126804
(
2002
).
14.
D.
Nandi
,
A. D. K.
Finck
,
J. P.
Eisenstein
,
L. N.
Pfeiffer
, and
K. W.
West
, “
Exciton condensation and perfect Coulomb drag
,”
Nature
488
,
481
484
(
2012
).
15.
K.
Lee
,
J.
Xue
,
D. C.
Dillen
,
K.
Watanabe
,
T.
Taniguchi
, and
E.
Tutuc
, “
Giant frictional drag in double bilayer graphene heterostructures
,”
Phys. Rev. Lett.
117
,
046803
(
2016
).
16.
J. I. A.
Li
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Hone
,
A.
Levchenko
, and
C. R.
Dean
, “
Negative Coulomb drag in double bilayer graphene
,”
Phys. Rev. Lett.
117
,
046802
(
2016
).
17.
J. I. A.
Li
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Hone
, and
C. R.
Dean
, “
Excitonic superfluid phase in double bilayer graphene
,”
Nat. Phys.
13
,
751
755
(
2017
).
18.
A.
Tartakovskii
, “
Excitons in 2D heterostructures
,”
Nat. Rev. Phys.
2
,
8
9
(
2019
).
19.
S.
Gupta
,
A.
Kutana
, and
B. I.
Yakobson
, “
Heterobilayers of 2D materials as a platform for excitonic superfluidity
,”
Nat. Commun.
11
,
2989
(
2020
).
20.
F.
London
, “
On Bose-Einstein condensation
,”
Phys. Rev.
54
,
947
954
(
1938
).
21.
L.
Tisza
, “
The theory of liquid helium
,”
Phys. Rev.
72
,
838
854
(
1947
).
22.
K. B.
Davis
,
M.-O.
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Bose-Einstein condensation in a gas of sodium atoms
,”
Phys. Rev. Lett.
75
,
3969
3973
(
1995
).
23.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose-Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
).
24.
L. V.
Keldysh
, “
Coherent states of excitons
,”
Phys.-Usp.
60
,
1180
1186
(
2017
).
25.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
, “
Theory of superconductivity
,”
Phys. Rev.
108
,
1175
1204
(
1957
).
26.
J. M.
Blatt
, “
Electron pairs in the theory of superconductivity
,”
Prog. Theor. Phys.
23
,
447
450
(
1960
).
27.
P. W.
Anderson
, “
Twenty-five years of high-temperature superconductivity – A personal review
,”
J. Phys.: Conf. Ser.
449
,
012001
(
2013
).
28.
A. P.
Drozdov
,
P. P.
Kong
,
V. S.
Minkov
,
S. P.
Besedin
,
M. A.
Kuzovnikov
,
S.
Mozaffari
,
L.
Balicas
,
F. F.
Balakirev
,
D. E.
Graf
,
V. B.
Prakapenka
,
E.
Greenberg
,
D. A.
Knyazev
,
M.
Tkacz
, and
M. I.
Eremets
, “
Superconductivity at 250 K in lanthanum hydride under high pressures
,”
Nature
569
,
528
531
(
2019
).
29.
H.
Min
,
R.
Bistritzer
,
J.-J.
Su
, and
A. H.
MacDonald
, “
Room-temperature superfluidity in graphene bilayers
,”
Phys. Rev. B
78
,
121401
(
2008
).
30.
A.
Perali
,
D.
Neilson
, and
A. R.
Hamilton
, “
High-temperature superfluidity in double-bilayer graphene
,”
Phys. Rev. Lett.
110
,
146803
(
2013
).
31.
M. M.
Fogler
,
L. V.
Butov
, and
K. S.
Novoselov
, “
High-temperature superfluidity with indirect excitons in van der Waals heterostructures
,”
Nat. Commun.
5
,
4555
(
2014
).
32.
L.
Ma
,
P. X.
Nguyen
,
Z.
Wang
,
Y.
Zeng
,
K.
Watanabe
,
T.
Taniguchi
,
A. H.
MacDonald
,
K. F.
Mak
, and
J.
Shan
, “
Strongly correlated excitonic insulator in atomic double layers
,”
Nature
598
,
585
589
(
2021
).
33.
X.
Hu
,
T.
Hyart
,
D. I.
Pikulin
, and
E.
Rossi
, “
Quantum-metric-enabled exciton condensate in double twisted bilayer graphene
,” arXiv:2008.03241 [cond-mat.mes-hall] (
2020
).
34.
D. I.
Pikulin
and
T.
Hyart
, “
Interplay of exciton condensation and the quantum spin hall effect in InAs/GaSb bilayers
,”
Phys. Rev. Lett.
112
,
176403
(
2014
).
35.
B.
Debnath
,
Y.
Barlas
,
D.
Wickramaratne
,
M. R.
Neupane
, and
R. K.
Lake
, “
Exciton condensate in bilayer transition metal dichalcogenides: Strong coupling regime
,”
Phys. Rev. B
96
,
174504
(
2017
).
36.
G. W.
Burg
,
N.
Prasad
,
K.
Kim
,
T.
Taniguchi
,
K.
Watanabe
,
A. H.
MacDonald
,
L. F.
Register
, and
E.
Tutuc
, “
Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-WSe2 heterostructures
,”
Phys. Rev. Lett.
120
,
177702
(
2018
).
37.
Z.
Wang
,
D. A.
Rhodes
,
K.
Watanabe
,
T.
Taniguchi
,
J. C.
Hone
,
J.
Shan
, and
K. F.
Mak
, “
Evidence of high-temperature exciton condensation in two-dimensional atomic double layers
,”
Nature
574
,
76
80
(
2019
).
38.
Y.
Shimazaki
,
I.
Schwartz
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Kroner
, and
A.
Imamoğlu
, “
Strongly correlated electrons and hybrid excitons in a moiré heterostructure
,”
Nature
580
,
472
477
(
2020
).
39.
P.
Rickhaus
,
F. K.
de Vries
,
J.
Zhu
,
E.
Portoles
,
G.
Zheng
,
M.
Masseroni
,
A.
Kurzmann
,
T.
Taniguchi
,
K.
Watanabe
,
A. H.
MacDonald
 et al., “
Correlated electron-hole state in twisted double-bilayer graphene
,”
Science
373
,
1257
1260
(
2021
).
40.
J. P.
Eisenstein
and
A. H.
MacDonald
, “
Bose–Einstein condensation of excitons in bilayer electron systems
,”
Nature
432
,
691
694
(
2004
).
41.
L.
Sigl
,
F.
Sigger
,
F.
Kronowetter
,
J.
Kiemle
,
J.
Klein
,
K.
Watanabe
,
T.
Taniguchi
,
J. J.
Finley
,
U.
Wurstbauer
, and
A. W.
Holleitner
, “
Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack
,”
Phys. Rev. Res.
2
,
042044(R)
(
2020
).
42.
J. C.
Sancho-García
and
A. J.
Pérez-Jiménez
, “
Theoretical study of stability and charge-transport properties of coronene molecule and some of its halogenated derivatives: A path to ambipolar organic-based materials?
,”
J. Chem. Phys.
141
,
134708
(
2014
)..
43.
K.
Uehara
,
H.
Kano
,
K.
Matsuo
,
H.
Hayashi
,
M.
Fujiki
,
H.
Yamada
, and
N.
Aratani
, “
Mirror-image cofacial coronene dimers characterized by CD and CPL spectroscopy: A twisted bilayer nanographene
,”
ChemPhotoChem
5
,
974
978
(
2021
).
44.
D. A.
Mazziotti
, “
Two-electron reduced density matrix as the basic variable in many-electron quantum chemistry and physics
,”
Chem. Rev.
112
,
244
262
(
2012
).
45.
D. A.
Mazziotti
,
Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecule
, Adv. Chem. Phys. (
Wiley
,
New York
,
2007
), Vol. 134.
46.
D. A.
Mazziotti
, “
Large-scale semidefinite programming for many-electron quantum mechanics
,”
Phys. Rev. Lett.
106
,
083001
(
2011
).
47.
D. A.
Mazziotti
, “
Realization of quantum chemistry without wave functions through first-order semidefinite programming
,”
Phys. Rev. Lett.
93
,
213001
(
2004
).
48.
D. A.
Mazziotti
, “
Enhanced constraints for accurate lower bounds on many-electron quantum energies from variational two-electron reduced density matrix theory
,”
Phys. Rev. Lett.
117
,
153001
(
2016
).
49.
D. A.
Mazziotti
, “
Dual-cone variational calculation of the two-electron reduced density matrix
,”
Phys. Rev. A
102
,
052819
(
2020
).
50.
M.
Nakata
,
H.
Nakatsuji
,
M.
Ehara
,
M.
Fukuda
,
K.
Nakata
, and
K.
Fujisawa
, “
Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm
,”
J. Chem. Phys.
114
,
8282
8292
(
2001
).
51.
D. A.
Mazziotti
, “
Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix
,”
Phys. Rev. A
65
,
062511
(
2002
).
52.
G.
Gidofalvi
and
D. A.
Mazziotti
, “
Active-space two-electron reduced-density-matrix method: Complete active-space calculations without diagonalization of the N-electron Hamiltonian
,”
J. Chem. Phys.
129
,
134108
(
2008
).
53.
A. W.
Schlimgen
,
C. W.
Heaps
, and
D. A.
Mazziotti
, “
Entangled electrons foil synthesis of elusive low-valent vanadium oxo complex
,”
J. Phys. Chem. Lett.
7
,
627
631
(
2016
).
54.
J.-N.
Boyn
,
J.
Xie
,
J. S.
Anderson
, and
D. A.
Mazziotti
, “
Entangled electrons drive a non-superexchange mechanism in a cobalt quinoid dimer complex
,”
J. Phys. Chem. Lett.
11
,
4584
4590
(
2020
).
55.
A.
Kawamura
,
J.
Xie
,
J.-N.
Boyn
,
K. A.
Jesse
,
A. J.
McNeece
,
E. A.
Hill
,
K. A.
Collins
,
J. A.
Valdez-Moreira
,
A. S.
Filatov
,
J. W.
Kurutz
,
D. A.
Mazziotti
, and
J. S.
Anderson
, “
Reversible switching of organic diradical character via iron-based spin-crossover
,”
J. Am. Chem. Soc.
142
,
17670
17680
(
2020
).
56.
S. N.
Bose
and
A.
Einstein
, “
Planck’s law and light quantum hypothesis
,”
Z. Phys.
26
,
178
(
1924
).
57.
A.
Einstein
,
Quantentheorie des einatomigen idealen Gases
(
K.P.A.W.
,
1924
), pp.
261
267
.
58.
O.
Penrose
and
L.
Onsager
, “
Bose-Einstein condensation and liquid helium
,”
Phys. Rev.
104
,
576
584
(
1956
).
59.
W.
Pauli
, “
The connection between spin and statistics
,”
Phys. Rev.
58
,
716
722
(
1940
).
60.
C. N.
Yang
, “
Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors
,”
Rev. Mod. Phys.
34
,
694
704
(
1962
).
61.
F.
Sasaki
, “
Eigenvalues of fermion density matrices
,”
Phys. Rev.
138
,
B1338
B1342
(
1965
).
62.
A. J.
Coleman
, “
Structure of fermion density matrices
,”
Rev. Mod. Phys.
35
,
668
686
(
1963
).
63.
A.
Raeber
and
D. A.
Mazziotti
, “
Large eigenvalue of the cumulant part of the two-electron reduced density matrix as a measure of off-diagonal long-range order
,”
Phys. Rev. A
92
,
052502
(
2015
).
64.
P. R.
Surján
, “
An introduction to the theory of geminals
,” in
Correlation and Localization
, edited by
P. R.
Surján
,
R. J.
Bartlett
,
F.
Bogár
,
D. L.
Cooper
,
B.
Kirtman
,
W.
Klopper
,
W.
Kutzelnigg
,
N. H.
March
,
P. G.
Mezey
,
H.
Müller
,
J.
Noga
,
J.
Paldus
,
J.
Pipek
,
M.
Raimondi
,
I.
Røeggen
,
J. Q.
Sun
,
P. R.
Surján
,
C.
Valdemoro
, and
S.
Vogtner
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1999
), pp.
63
88
.
65.
H.
Shull
, “
Natural spin orbital analysis of hydrogen molecule wave functions
,”
J. Chem. Phys.
30
,
1405
1413
(
1959
).
66.
C.
Garrod
and
M.
Rosina
, “
Particle-hole matrix: Its connection with the symmetries and collective features of the ground state
,”
J. Math. Phys.
10
,
1855
1861
(
1969
).
67.
W.
Kohn
and
D.
Sherrington
, “
Two kinds of bosons and bose condensates
,”
Rev. Mod. Phys.
42
,
1
11
(
1970
).
68.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
50
(
2018
).
69.
D. A.
Mazziotti
, “
Pure-N-representability conditions of two-fermion reduced density matrices
,”
Phys. Rev. A
94
,
032516
(
2016
).
70.
D. A.
Mazziotti
, “
Contracted Schrödinger equation: Determining quantum energies and two-particle density matrices without wave functions
,”
Phys. Rev. A
57
,
4219
4234
(
1998
).
You do not currently have access to this content.