As one of the most fascinating confined water/ice phenomena, two-dimensional square ice has been extensively studied and experimentally confirmed in recent years. Apart from the unidirectional homogeneous square icing patterns considered in previous studies, the multidirectional partitioned square icing patterns are discovered in this study and characterized by molecular dynamics (MD) simulations. Square icing parameters are proposed to quantitatively distinguish the partitioned patterns from the homogeneous patterns and the liquid water. The number of graphene monolayers n is varied in this study, and the results show that it is more energetically favorable to form partitioned square icing patterns when the water molecules are confined between graphite sheets (n ≥ 2) compared to graphene (n = 1). This phenomenon is insensitive to n as long as n ≥ 2 because of the short-range nature of the interaction between water molecules and the carbon substrate. Moreover, it is energetically unfavorable to form partitioned square icing patterns for a single layer of water molecules even for n ≥ 2, verifying that the interaction between layers of water molecules is another dominant factor in the formation of partitioned structures. The conversion from partitioned structure to homogeneous square patterns is investigated by changing the pressure and the temperature. Based on the comprehensive MD simulations, this study unveils the formation mechanism of the partitioned square icing patterns.

1.
O.
Mishima
and
H. E.
Stanley
, “
The relationship between liquid, supercooled and glassy water
,”
Nature
396
,
329
335
(
1998
).
2.
P. G.
Debenedetti
, “
Supercooled and glassy water
,”
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
3.
Y.
Huang
,
C.
Zhu
,
L.
Wang
,
X.
Cao
,
Y.
Su
,
X.
Jiang
,
S.
Meng
,
J.
Zhao
, and
X. C.
Zeng
, “
A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III
,”
Sci. Adv.
2
,
e1501010
(
2016
).
4.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
, “
Phase behaviour of metastable water
,”
Nature
360
,
324
328
(
1992
).
5.
F.
Sciortino
,
U.
Essmann
,
H. E.
Stanley
,
M.
Hemmati
,
J.
Shao
,
G. H.
Wolf
, and
C. A.
Angell
, “
Crystal stability limits at positive and negative pressures, and crystal-to-glass transitions
,”
Phys. Rev. E
52
,
6484
(
1995
).
6.
W.-H.
Zhao
,
L.
Wang
,
J.
Bai
,
L.-F.
Yuan
,
J.
Yang
, and
X. C.
Zeng
, “
Highly confined water: Two-dimensional ice, amorphous ice, and clathrate hydrates
,”
Acc. Chem. Res.
47
,
2505
2513
(
2014
).
7.
Q.
Zheng
,
D. J.
Durben
,
G. H.
Wolf
, and
C. A.
Angell
, “
Liquids at large negative pressures: Water at the homogeneous nucleation limit
,”
Science
254
,
829
832
(
1991
).
8.
O. C.
Compton
,
S. W.
Cranford
,
K. W.
Putz
,
Z.
An
,
L. C.
Brinson
,
M. J.
Buehler
, and
S. T.
Nguyen
, “
Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding
,”
ACS Nano
6
,
2008
2019
(
2012
).
9.
M.
Neek-Amal
,
F. M.
Peeters
,
I. V.
Grigorieva
, and
A. K.
Geim
, “
Commensurability effects in viscosity of nanoconfined water
,”
ACS Nano
10
,
3685
3692
(
2016
).
10.
K.
Koga
,
R. D.
Parra
,
H.
Tanaka
, and
X. C.
Zeng
, “
Ice nanotube: What does the unit cell look like?
J. Chem. Phys.
113
,
5037
5040
(
2000
).
11.
J.
Bai
,
C.-R.
Su
,
R. D.
Parra
,
X. C.
Zeng
,
H.
Tanaka
,
K.
Koga
, and
J.-M.
Li
, “
Ab initio studies of quasi-one-dimensional pentagon and hexagon ice nanotubes
,”
J. Chem. Phys.
118
,
3913
3916
(
2003
).
12.
K.
Koga
,
G. T.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
, “
Formation of ordered ice nanotubes inside carbon nanotubes
,”
Nature
412
,
802
805
(
2001
).
13.
O.
Byl
,
J.-C.
Liu
,
Y.
Wang
,
W.-L.
Yim
,
J. K.
Johnson
, and
J. T.
Yates
, “
Unusual hydrogen bonding in water-filled carbon nanotubes
,”
J. Am. Chem. Soc.
128
,
12090
12097
(
2006
).
14.
J.
Bai
,
J.
Wang
, and
X. C.
Zeng
, “
Multiwalled ice helixes and ice nanotubes
,”
Proc. Natl. Acad. Sci.
103
,
19664
19667
(
2006
).
15.
J.
Bai
,
C. A.
Angell
, and
X. C.
Zeng
, “
Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice
,”
Proc. Natl. Acad. Sci.
107
,
5718
5722
(
2010
).
16.
W.-H.
Zhao
,
J.
Bai
,
L.-F.
Yuan
,
J.
Yang
, and
X. C.
Zeng
, “
Ferroelectric hexagonal and rhombic monolayer ice phases
,”
Chem. Sci.
5
,
1757
1764
(
2014
).
17.
G.
Algara-Siller
,
O.
Lehtinen
,
F. C.
Wang
,
R. R.
Nair
,
U.
Kaiser
,
H. A.
Wu
,
A. K.
Geim
, and
I. V.
Grigorieva
, “
Square ice in graphene nanocapillaries
,”
Nature
519
,
443
445
(
2015
).
18.
J.
Chen
,
G.
Schusteritsch
,
C. J.
Pickard
,
C. G.
Salzmann
, and
A.
Michaelides
, “
Double-layer ice from first principles
,”
Phys. Rev. B
95
,
094121
(
2017
).
19.
F.
Corsetti
,
J.
Zubeltzu
, and
E.
Artacho
, “
Enhanced configurational entropy in high-density nanoconfined bilayer ice
,”
Phys. Rev. Lett.
116
,
085901
(
2016
).
20.
K.
Koga
and
H.
Tanaka
, “
Phase diagram of water between hydrophobic surfaces
,”
J. Chem. Phys.
122
,
104711
(
2005
).
21.
K.
Koga
,
H.
Tanaka
, and
X. C.
Zeng
, “
First-order transition in confined water between high-density liquid and low-density amorphous phases
,”
Nature
408
,
564
567
(
2000
).
22.
J.
Bai
and
X. C.
Zeng
, “
Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure
,”
Proc. Natl. Acad. Sci.
109
,
21240
21245
(
2012
).
23.
Y.
Zhu
,
F.
Wang
,
J.
Bai
,
X. C.
Zeng
, and
H.
Wu
, “
Compression limit of two-dimensional water constrained in graphene nanocapillaries
,”
ACS Nano
9
,
12197
12204
(
2015
).
24.
R.
Zangi
, “
Water confined to a slab geometry: A review of recent computer simulation studies
,”
J. Phys.: Condens. Matter
16
,
S5371
(
2004
).
25.
Y.
Zhu
,
F.
Wang
, and
H.
Wu
, “
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries
,”
J. Chem. Phys.
145
,
054704
(
2016
).
26.
Y.
Zhu
,
F.
Wang
, and
H.
Wu
, “
Superheating of monolayer ice in graphene nanocapillaries
,”
J. Chem. Phys.
146
,
134703
(
2017
).
27.
Y.
Zhu
,
F.
Wang
,
J.
Bai
,
X. C.
Zeng
, and
H.
Wu
, “
Ab-stacked square-like bilayer ice in graphene nanocapillaries
,”
Phys. Chem. Chem. Phys.
18
,
22039
22046
(
2016
).
28.
Y.
Zhu
,
F.
Wang
,
J.
Bai
,
X. C.
Zeng
, and
H.
Wu
, “
Formation of trilayer ices in graphene nanocapillaries under high lateral pressure
,”
J. Phys. Chem. C
120
,
8109
8115
(
2016
).
29.
H.
Qiu
,
X. C.
Zeng
, and
W.
Guo
, “
Water in inhomogeneous nanoconfinement: Coexistence of multilayered liquid and transition to ice nanoribbons
,”
ACS Nano
9
,
9877
9884
(
2015
).
30.
L.
Ruiz Pestana
,
L. E.
Felberg
, and
T.
Head-Gordon
, “
Coexistence of multilayered phases of confined water: The importance of flexible confining surfaces
,”
ACS Nano
12
,
448
454
(
2018
).
31.
Y.
Zhu
,
F.
Wang
, and
H.
Wu
, “
Structural and dynamic characteristics in monolayer square ice
,”
J. Chem. Phys.
147
,
044706
(
2017
).
32.
Y.
Maniwa
,
H.
Kataura
,
M.
Abe
,
A.
Udaka
,
S.
Suzuki
,
Y.
Achiba
,
H.
Kira
,
K.
Matsuda
,
H.
Kadowaki
, and
Y.
Okabe
, “
Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes
,”
Chem. Phys. Lett.
401
,
534
538
(
2005
).
33.
K. B.
Jinesh
and
J. W.
Frenken
, “
Experimental evidence for ice formation at room temperature
,”
Phys. Rev. Lett.
101
,
036101
(
2008
).
34.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
35.
Z.
Che
and
P. E.
Theodorakis
, “
Formation, dissolution and properties of surface nanobubbles
,”
J. Colloid Interface Sci.
487
,
123
129
(
2017
).
36.
M. C.
Gordillo
and
J.
Martí
, “
Hydrogen bond structure of liquid water confined in nanotubes
,”
Chem. Phys. Lett.
329
,
341
345
(
2000
).
37.
L.
Joly
, “
Capillary filling with giant liquid/solid slip: Dynamics of water uptake by carbon nanotubes
,”
J. Chem. Phys.
135
,
214705
(
2011
).
38.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
112
,
14090
(
2008
).
39.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
40.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graph.
14
,
33
38
(
1996
).

Supplementary Material

You do not currently have access to this content.