Among amorphous states, glass is defined by relaxation times longer than the observation time. This nonergodic nature makes the understanding of glassy systems an involved topic, with complex aging effects or responses to further out-of-equilibrium external drivings. In this respect, active glasses made of self-propelled particles have recently emerged as a stimulating systems, which broadens and challenges our current understanding of glasses by considering novel internal out-of-equilibrium degrees of freedom. In previous experimental studies we have shown that in the ergodicity broken phase, the dynamics of dense passive particles first slows down as particles are made slightly active, before speeding up at larger activity. Here, we show that this nonmonotonic behavior also emerges in simulations of soft active Brownian particles and explore its cause. We refute that the deadlock by emergence of active directionality model we proposed earlier describes our data. However, we demonstrate that the nonmonotonic response is due to activity enhanced aging and thus confirm the link with ergodicity breaking. Beyond self-propelled systems, our results suggest that aging in active glasses is not fully understood.

1.
M.
Goldstein
, “
Viscous liquids and the glass transition: A potential energy barrier picture
,”
J. Chem. Phys.
51
,
3728
(
1969
).
2.
P. G.
Debenedetti
and
F. H.
Stillinger
, “
Supercooled liquids and the glass transition
,”
Nature
410
,
259
267
(
2001
).
3.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
645
(
2011
).
4.
P.
Charbonneau
,
J.
Kurchan
,
G.
Parisi
,
P.
Urbani
, and
F.
Zamponi
, “
Fractal free energy landscapes in structural glasses
,”
Nat. Commun.
5
,
3725
(
2014
).
5.
P.
Charbonneau
,
J.
Kurchan
,
G.
Parisi
,
P.
Urbani
, and
F.
Zamponi
, “
Glass and jamming transitions: From exact results to finite-dimensional descriptions
,”
Annu. Rev. Condens. Matter Phys.
8
,
265
288
(
2017
).
6.
L. C. E.
Struik
, “
Physical aging in amorphous polymers and other materials
,” Ph.D. thesis,
Technische Hogeschool
,
Delft
,
1977
.
7.
E.
Vincent
,
J.
Hammann
,
M.
Ocio
,
J.-P.
Bouchaud
, and
L. F.
Cugliandolo
, “
Slow dynamics and aging in spin glasses
,” in
Complex Behaviour of Glassy Systems
, Lecture Notes in Physics, edited by
M.
Rubí
and
C.
Pérez-Vicente
(
Springer
,
Berlin, Heidelberg
,
1997
), pp.
184
219
.
8.
C.
Scalliet
and
L.
Berthier
, “
Rejuvenation and memory effects in a structural glass
,”
Phys. Rev. Lett.
122
,
255502
(
2019
).
9.
V.
Viasnoff
and
F.
Lequeux
, “
Rejuvenation and overaging in a colloidal glass under shear
,”
Phys. Rev. Lett.
89
,
065701
(
2002
).
10.
A.
Ikeda
,
L.
Berthier
, and
P.
Sollich
, “
Disentangling glass and jamming physics in the rheology of soft materials
,”
Soft Matter
9
,
7669
(
2013
).
11.
L. M. C.
Janssen
,
A.
Kaiser
, and
H.
Löwen
, “
Aging and rejuvenation of active matter under topological constraints
,”
Sci. Rep.
7
,
5667
(
2017
).
12.
L. M. C.
Janssen
, “
Active glasses
,”
J. Phys.: Condens. Matter
31
,
503002
(
2019
).
13.
S.
Garcia
,
E.
Hannezo
,
J.
Elgeti
,
J.-F.
Joanny
,
P.
Silberzan
, and
N. S.
Gov
, “
Physics of active jamming during collective cellular motion in a monolayer
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
15314
15319
(
2015
).
14.
D.
Bi
,
X.
Yang
,
M. C.
Marchetti
, and
M. L.
Manning
, “
Motility-driven glass and jamming transitions in biological tissues
,”
Phys. Rev. X
6
,
021011
(
2016
).
15.
S.
Ramaswamy
, “
The mechanics and statistics of active matter
,”
Annu. Rev. Condens. Matter Phys.
1
,
323
345
(
2010
).
16.
T.
Vicsek
and
A.
Zafeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
140
(
2012
).
17.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
1189
(
2013
).
18.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
19.
J. R.
Howse
,
R. A.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
20.
J.
Tailleur
and
M. E.
Cates
, “
Sedimentation, trapping, and rectification of dilute bacteria
,”
Europhys. Lett.
86
,
60002
(
2009
).
21.
J.
Palacci
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Sedimentation and effective temperature of active colloidal suspensions
,”
Phys. Rev. Lett.
105
,
088304
(
2010
).
22.
F.
Ginot
,
I.
Theurkauff
,
D.
Levis
,
C.
Ybert
,
L.
Bocquet
,
L.
Berthier
, and
C.
Cottin-Bizonne
, “
Nonequilibrium equation of state in suspensions of active colloids
,”
Phys. Rev. X
5
,
011004
(
2015
).
23.
N.
Klongvessa
,
F.
Ginot
,
C.
Ybert
,
C.
Cottin-Bizonne
, and
M.
Leocmach
, “
Active glass: Ergodicity breaking dramatically affects response to self-propulsion
,”
Phys. Rev. Lett.
123
,
248004
(
2019
).
24.
N.
Klongvessa
,
F.
Ginot
,
C.
Ybert
,
C.
Cottin-Bizonne
, and
M.
Leocmach
, “
Nonmonotonic behavior in dense assemblies of active colloids
,”
Phys. Rev. E
100
,
062603
(
2019
).
25.
A.
Liluashvili
,
J.
Ónody
, and
T.
Voigtmann
, “
Mode-coupling theory for active Brownian particles
,”
Phys. Rev. E
96
,
062608
(
2017
).
26.
V. E.
Debets
,
X. M.
de Wit
, and
L. M. C.
Janssen
, “
Cage length controls the nonmonotonic dynamics of active glassy matter
,”
Phys. Rev. Lett.
127
,
278002
(
2021
); arXiv:2111.11171.
27.
L.
Berthier
,
E.
Flenner
, and
G.
Szamel
, “
How active forces influence nonequilibrium glass transitions
,”
New J. Phys.
19
,
125006
(
2017
).
28.
S. K.
Nandi
,
R.
Mandal
,
P. J.
Bhuyan
,
C.
Dasgupta
,
M.
Rao
, and
N. S.
Gov
, “
A random first-order transition theory for an active glass
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
7688
7693
(
2018
).
29.
R.
Mandal
,
P. J.
Bhuyan
,
P.
Chaudhuri
,
C.
Dasgupta
, and
M.
Rao
, “
Extreme active matter at high densities
,”
Nat. Commun.
11
,
2581
(
2020
).
30.
R.
Mandal
and
P.
Sollich
, “
Multiple types of aging in active glasses
,”
Phys. Rev. Lett.
125
,
218001
(
2020
).
31.
G.
Janzen
and
L. M. C.
Janssen
, “
Aging in thermal active glasses
,”
Phys. Rev. Res.
4
,
L012038
(
2022
).
32.
K.
Paul
,
S. K.
Nandi
, and
S.
Karmakar
, “
Dynamic heterogeneity in active glass-forming liquids is qualitatively different compared to its equilibrium behaviour
,” arXiv:2105.12702 [cond-mat] (
2021
).
33.
H.
Shiba
,
Y.
Yamada
,
T.
Kawasaki
, and
K.
Kim
, “
Unveiling dimensionality dependence of glassy dynamics: 2D infinite fluctuation eclipses inherent structural relaxation
,”
Phys. Rev. Lett.
117
,
245701
(
2016
).
34.
B.
Illing
,
S.
Fritschi
,
H.
Kaiser
,
C. L.
Klix
,
G.
Maret
, and
P.
Keim
, “
Mermin–Wagner fluctuations in 2D amorphous solids
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
1856
1861
(
2017
).
35.
Y.
Fily
and
M. C.
Marchetti
, “
Athermal phase separation of self-propelled particles with no alignment
,”
Phys. Rev. Lett.
108
,
235702
(
2012
).
36.
G.
Volpe
,
S.
Gigan
, and
G.
Volpe
, “
Simulation of the active Brownian motion of a microswimmer
,”
Am. J. Phys.
82
,
659
664
(
2014
).
37.
C. S.
O’Hern
,
S.
Langer
,
A. J.
Liu
, and
S.
Nagel
, “
Random packings of frictionless particles
,”
Phys. Rev. Lett.
88
,
075507
(
2002
).
38.
L.
Berthier
and
T. A.
Witten
, “
Compressing nearly hard sphere fluids increases glass fragility
,”
Europhys. Lett.
86
,
10001
(
2009
).
39.
T.
Kawasaki
and
H.
Tanaka
, “
Structural evolution in the aging process of supercooled colloidal liquids
,”
Phys. Rev. E
89
,
062315
(
2014
).
40.
J. R.
Gomez-Solano
,
S.
Samin
,
C.
Lozano
,
P.
Ruedas-Batuecas
,
R.
van Roij
, and
C.
Bechinger
, “
Tuning the motility and directionality of self-propelled colloids
,”
Sci. Rep.
7
,
14891
(
2017
).
41.
P.
Digregorio
,
D.
Levis
,
A.
Suma
,
L. F.
Cugliandolo
,
G.
Gonnella
, and
I.
Pagonabarraga
, “
Full phase diagram of active Brownian disks: From melting to motility-induced phase separation
,”
Phys. Rev. Lett.
121
,
098003
(
2018
).
42.
S.
Mazoyer
,
F.
Ebert
,
G.
Maret
, and
P.
Keim
, “
Dynamics of particles and cages in an experimental 2D glass former
,”
Europhys. Lett.
88
,
66004
(
2009
).
43.
H.
Jacquin
and
L.
Berthier
, “
Anomalous structural evolution of soft particles: Equilibrium liquid state theory
,”
Soft Matter
6
,
2970
(
2010
).
44.
L.
Berthier
,
A. J.
Moreno
, and
G.
Szamel
, “
Increasing the density melts ultrasoft colloidal glasses
,”
Phys. Rev. E
82
,
060501
(
2010
).
45.
R.
Ni
,
M. A. C.
Stuart
, and
M.
Dijkstra
, “
Pushing the glass transition towards random close packing using self-propelled hard spheres
.”
Nat. Commun.
4
,
2704
(
2013
).
46.
A. M.
Philippe
,
D.
Truzzolillo
,
J.
Galvan-Myoshi
,
P.
Dieudonné-George
,
V.
Trappe
,
L.
Berthier
, and
L.
Cipelletti
, “
Glass transition of soft colloids
,”
Phys. Rev. E
97
,
040601
(
2018
).
47.
F.
Arceri
,
F. P.
Landes
,
L.
Berthier
, and
G.
Biroli
, “
Glasses and aging: A statistical mechanics perspective
,” arXiv:2006.09725 [cond-mat] (
2020
).
You do not currently have access to this content.