Local structure identification is of great importance in many scientific and engineering fields. However, mathematical and supervised learning methods mostly rely on specific descriptors of local structures and can only be applied to particular packing configurations. In this work, we propose an improved unsupervised learning method, which is descriptor-free, for local structure identification in particle packing. The point cloud is used as the input of the improved method, which directly comes from spatial positions of particles and does not rely on specific descriptors. The improved method constructs an autoencoder based on the point cloud network combined with Gaussian mixture models for dimension reduction and clustering. Numerical examples show that the improved method performs well in local structure identification of quasicrystal disk and sphere packings, achieving comparable accuracy with previous methods. For disordered packings, which have been considered having nearly no local structures, the improved method identifies a nontrivial seven-neighbor motif in the maximally dense random packing of disks and finds acentric structural motifs in the random close packing of spheres, which demonstrate the ability on identification of new and unknown local structures. The improved unsupervised learning method would help obtain information from massive simulation and experimental results as well as devising new order parameters for particle packings.

1.
S.
Li
,
J.
Zhao
,
P.
Lu
, and
Y.
Xie
, “
Maximum packing densities of basic 3D objects
,”
Chin. Sci. Bull.
55
,
114
119
(
2010
).
2.
A.
Stukowski
, “
Structure identification methods for atomistic simulations of crystalline materials
,”
Modell. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
).
3.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
805
(
1983
).
4.
G. J.
Ackland
and
A. P.
Jones
, “
Applications of local crystal structure measures in experiment and simulation
,”
Phys. Rev. B
73
,
054104
(
2006
).
5.
J. D.
Honeycutt
and
H. C.
Andersen
, “
Molecular dynamics study of melting and freezing of small Lennard-Jones clusters
,”
J. Phys. Chem.
91
,
4950
4963
(
1987
).
6.
P. M.
Larsen
,
S.
Schmidt
, and
J.
Schiøtz
, “
Robust structural identification via polyhedral template matching
,”
Modell. Simul. Mater. Sci. Eng.
24
,
055007
(
2016
).
7.
A. S.
Keys
,
C. R.
Iacovella
, and
S. C.
Glotzer
, “
Characterizing structure through shape matching and applications to self-assembly
,”
Annu. Rev. Condens. Matter Phys.
2
,
263
285
(
2011
).
8.
P.
Geiger
and
C.
Dellago
, “
Neural networks for local structure detection in polymorphic systems
,”
J. Chem. Phys.
139
,
164105
(
2013
).
9.
C.
Dietz
,
T.
Kretz
, and
M. H.
Thoma
, “
Machine-learning approach for local classification of crystalline structures in multiphase systems
,”
Phys. Rev. E
96
,
011301
(
2017
).
10.
E.
Boattini
,
M.
Ram
,
F.
Smallenburg
, and
L.
Filion
, “
Neural-network-based order parameters for classification of binary hard-sphere crystal structures
,”
Mol. Phys.
116
,
3066
3075
(
2018
).
11.
R. S.
DeFever
,
C.
Targonski
,
S. W.
Hall
,
M. C.
Smith
, and
S.
Sarupria
, “
A generalized deep learning approach for local structure identification in molecular simulations
,”
Chem. Sci.
10
,
7503
7515
(
2019
).
12.
M.
Fulford
,
M.
Salvalaglio
, and
C.
Molteni
, “
DeepIce: A deep neural network approach to identify ice and water molecules
,”
J. Chem. Inf. Model.
59
,
2141
2149
(
2019
).
13.
C. L.
Phillips
and
G. A.
Voth
, “
Discovering crystals using shape matching and machine learning
,”
Soft Matter
9
,
8552
8568
(
2013
).
14.
W. F.
Reinhart
,
A. W.
Long
,
M. P.
Howard
,
A. L.
Ferguson
, and
A. Z.
Panagiotopoulos
, “
Machine learning for autonomous crystal structure identification
,”
Soft Matter
13
,
4733
4745
(
2017
).
15.
M.
Spellings
and
S. C.
Glotzer
, “
Machine learning for crystal identification and discovery
,”
AIChE J.
64
,
2198
2206
(
2018
).
16.
E.
Boattini
,
M.
Dijkstra
, and
L.
Filion
, “
Unsupervised learning for local structure detection in colloidal systems
,”
J. Chem. Phys.
151
,
154901
(
2019
).
17.
C. S.
Adorf
,
T. C.
Moore
,
Y. J. U.
Melle
, and
S. C.
Glotzer
, “
Analysis of self-assembly pathways with unsupervised machine learning algorithms
,”
J. Phys. Chem. B
124
,
69
78
(
2020
).
18.
E.
Boattini
,
S.
Marín-Aguilar
,
S.
Mitra
,
G.
Foffi
,
F.
Smallenburg
, and
L.
Filion
, “
Autonomously revealing hidden local structures in supercooled liquids
,”
Nat. Commun.
11
,
5479
(
2020
).
19.
J.
O’Leary
,
R. F.
Mao
,
E. J.
Pretti
,
J. A.
Paulson
,
J.
Mittal
, and
A.
Mesbah
, “
Deep learning for characterizing the self-assembly of three-dimensional colloidal systems
,”
Soft Matter
17
,
989
999
(
2021
).
20.
P. S.
Clegg
, “
Characterising soft matter using machine learning
,”
Soft Matter
17
,
3991
(
2021
).
21.
Y.
Guo
,
H.
Wang
,
Q.
Hu
,
H.
Liu
,
L.
Liu
, and
M.
Bennamoun
, “
Deep learning for 3D point clouds: A survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
43
,
4338
(
2021
).
22.
C. R.
Qi
,
H.
Su
,
K. C.
Mo
, and
L. J.
Guibas
, “
PointNet: Deep learning on point sets for 3D classification and segmentation
,” in
30th IEEE Conference on Computer Vision and Pattern Recognition (Cvpr, 2017)
(
IEEE
,
2017
), pp.
77
85
.
23.
S.
Torquato
and
Y.
Jiao
, “
Dense packings of polyhedra: Platonic and Archimedean solids
,”
Phys. Rev. E
80
,
041104
(
2009
).
24.
J.
Zhao
,
S.
Li
,
R.
Zou
, and
A.
Yu
, “
Dense random packings of spherocylinders
,”
Soft Matter
8
,
1003
1009
(
2012
).
25.
C. S.
O’Hern
,
S. A.
Langer
,
A. J.
Liu
, and
S. R.
Nagel
, “
Random packings of frictionless particles
,”
Phys. Rev. Lett.
88
,
075507
(
2002
)
26.
C. F.
Schreck
,
M.
Mailman
,
B.
Chakraborty
, and
C. S.
O’Hern
, “
Constraints and vibrations in static packings of ellipsoidal particles
,”
Phys. Rev. E
85
,
061305
(
2012
)
27.
L.
Liu
,
Z.
Yu
,
W.
Jin
,
Y.
Yuan
, and
S.
Li
, “
Uniform and decoupled shape effects on the maximally dense random packings of hard superellipsoids
,”
Powder Technol.
338
,
67
78
(
2018
).
28.
Software is available on www.autopacking.net.
29.
D. C.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large-scale optimization
,”
Math. Program.
45
,
503
528
(
1989
).
30.
P.
Achlioptas
,
O.
Diamanti
,
I.
Mitliagkas
, and
L.
Guibas
, “
Learning representations and generative models for 3D point clouds
,”
Proc. Machine Learn. Res.
80
,
40
49
(
2018
), available at https://proceedings.mlr.press/v80/achlioptas18a.
31.
T.
Aumentado-Armstrong
,
S.
Tsogkas
,
S.
Dickinson
, and
A.
Jepson
, “
Disentangling geometric deformation spaces in generative latent shape models
,” arXiv:2103.00142 (
2021
).
32.
X.
Glorot
,
A.
Bordes
, and
Y.
Bengio
, “
Deep sparse rectifier neural networks
,”
Proc. Machine Learn. Res.
15
,
315
323
(
2011
), available at http://proceedings.mlr.press/v15/glorot11a.
33.
J. L.
Ba
,
J. R.
Kiros
, and
G. E.
Hinton
, “
Layer normalization
,” arXiv:1607.06450 (
2016
).
34.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
35.
H.
Fan
,
H.
Su
, and
L. J.
Guibas
, “
A point set generation network for 3D object reconstruction from a single image
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2017
), pp.
605
613
.
36.
J.
Li
,
B. M.
Chen
, and
G. H.
Lee
, “
So-Net: Self-organizing network for point cloud analysis
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2018
), pp.
9397
9406
.
37.
P.
Khosla
,
P.
Teterwak
,
C.
Wang
,
A.
Sarna
,
Y.
Tian
,
P.
Isola
,
A.
Maschinot
,
C.
Liu
, and
D.
Krishnan
, “
Supervised contrastive learning
,”
Adv. Neural Inf. Process. Syst.
33
,
18661
18673
(
2020
).
38.
A. P.
Dempster
,
N. M.
Laird
, and
D. B.
Rubin
, “
Maximum likelihood from incomplete data via the EM algorithm
,”
J. R. Stat. Soc.: Series B
39
,
1
22
(
1977
).
39.
G.
Schwarz
 et al., “
Estimating the dimension of a model
,”
Ann. Stat.
6
,
461
464
(
1978
).
40.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO - The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
41.
L.
van der Maaten
and
G.
Hinton
, “
Visualizing data using t-SNE
,”
J. Mach. Learn. Res.
9
,
2579
2605
(
2008
).
42.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
,” software available from tensorflow.org,
2015
.
43.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
44.
D.
Weaire
and
T.
Aste
,
The Pursuit of Perfect Packing
(
CRC Press
,
2008
).
45.
W. M.
Rand
, “
Objective criteria for the evaluation of clustering methods
,”
J. Am. Stat. Assoc.
66
,
846
850
(
1971
).
46.
J. D.
Bernal
, “
Geometry of the structure of monatomic liquids
,”
Nature
185
,
68
70
(
1960
).
47.
S.
Torquato
and
F. H.
Stillinger
, “
Jammed hard-particle packings: From Kepler to Bernal and beyond [Rev. Mod. Phys 82, 2633 (2010)]
,”
Rev. Mod. Phys.
82
,
3197
(
2010
).
48.
S.
Atkinson
,
F. H.
Stillinger
, and
S.
Torquato
, “
Existence of isostatic, maximally random jammed monodisperse hard-disk packings
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
18436
18441
(
2014
).
49.
J. P. K.
Doye
,
D. J.
Wales
, and
R. S.
Berry
, “
The effect of the range of the potential on the structures of clusters
,”
J. Chem. Phys.
103
,
4234
4249
(
1995
).

Supplementary Material

You do not currently have access to this content.