Ionic liquids (ILs) are well classified as designer solvents based on the ease of tailoring their properties through modifying the chemical structure of the cation and anion. However, while many structure–property relationships have been developed, these generally only identify the most dominant trends. Here, we have used machine learning on existing experimental data to construct robust models to produce meaningful predictions across a broad range of cation and anion chemical structures. Specifically, we used previously collated experimental data for the viscosity and conductivity of protic ILs [T. L. Greaves and C. J. Drummond, Chem. Rev. 115, 11379–11448 (2015)] as the inputs for multiple linear regression and neural network models. These were then used to predict the properties of all 1827 possible cation–anion combinations (excluding the input combinations). These models included the effect of water content of up to 5 wt. %. A selection of ten new protic ILs was then prepared, which validated the usefulness of the models. Overall, this work shows that relatively sparse data can be used productively to predict physicochemical properties of vast arrays of ILs.

1.
T. L.
Greaves
and
C. J.
Drummond
, “
Protic ionic liquids: Evolving structure–property relationships and expanding applications
,”
Chem. Rev.
115
(
20
),
11379
11448
(
2015
).
2.
T.
Welton
, “
Ionic liquids: A brief history
,”
Biophys. Rev.
10
(
3
),
691
706
(
2018
).
3.
N. V.
Plechkova
and
K. R.
Seddon
, “
Applications of ionic liquids in the chemical industry
,”
Chem. Soc. Rev.
37
(
1
),
123
150
(
2007
).
4.
J. P.
Hallett
and
T.
Welton
, “
Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2
,”
Chem. Rev.
111
(
5
),
3508
3576
(
2011
).
5.
T. L.
Greaves
and
C. J.
Drummond
, “
Protic ionic liquids: Properties and applications
,”
Chem. Rev.
108
(
1
),
206
237
(
2008
).
6.
C.
Han
,
G.
Yu
,
L.
Wen
,
D.
Zhao
,
C.
Asumana
, and
X.
Chen
, “
Data and QSPR study for viscosity of imidazolium-based ionic liquids
,”
Fluid Phase Equilib.
300
(
1
),
95
104
(
2011
).
7.
F.
Philippi
and
T.
Welton
, “
Targeted modifications in ionic liquids—From understanding to design
,”
Phys. Chem. Chem. Phys.
23
(
12
),
6993
7021
(
2021
).
8.
S. K.
Singh
and
A. W.
Savoy
, “
Ionic liquids synthesis and applications: An overview
,”
J. Mol. Liq.
297
,
112038
(
2020
).
9.
M.-R.
Fatehi
,
S.
Raeissi
, and
D.
Mowla
, “
Estimation of viscosities of pure ionic liquids using an artificial neural network based on only structural characteristics
,”
J. Mol. Liq.
227
,
309
317
(
2017
).
10.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
, “
Structure and nanostructure in ionic liquids
,”
Chem. Rev.
115
(
13
),
6357
6426
(
2015
).
11.
K.
Fujita
,
D. R.
MacFarlane
, and
M.
Forsyth
, “
Protein solubilising and stabilising ionic liquids
,”
Chem. Commun.
38
,
4804
4806
(
2005
).
12.
T.
Stettner
,
P.
Huang
,
M.
Goktas
,
P.
Adelhelm
, and
A.
Balducci
, “
Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices
,”
J. Chem. Phys.
148
(
19
),
193825
(
2018
).
13.
T.
Takekiyo
,
K.
Yoshida
,
Y.
Funahashi
,
S.
Nagata
,
H.
Abe
,
T.
Yamaguchi
, and
Y.
Yoshimura
, “
Helix-forming ability of proteins in alkylammonium nitrate
,”
J. Mol. Liq.
243
,
584
590
(
2017
).
14.
M.
Watanabe
,
M. L.
Thomas
,
S.
Zhang
,
K.
Ueno
,
T.
Yasuda
, and
K.
Dokko
, “
Application of ionic liquids to energy storage and conversion materials and devices
,”
Chem. Rev.
117
(
10
),
7190
7239
(
2017
).
15.
T.
Welton
, “
Room-temperature ionic liquids. Solvents for synthesis and catalysis
,”
Chem. Rev.
99
(
8
),
2071
2084
(
1999
).
16.
Y.-H.
Tian
,
G. S.
Goff
,
W. H.
Runde
, and
E. R.
Batista
, “
Exploring electrochemical windows of room-temperature ionic liquids: A computational study
,”
J. Phys. Chem. B
116
(
39
),
11943
11952
(
2012
).
17.
D.
Yalcin
,
C. J.
Drummond
, and
T. L.
Greaves
, “
High throughput approach to investigating ternary solvents of aqueous non-stoichiometric protic ionic liquids
,”
Phys. Chem. Chem. Phys.
21
(
13
),
6810
6827
(
2019
).
18.
T. L.
Greaves
,
K.
Ha
,
B. W.
Muir
,
S. C.
Howard
,
A.
Weerawardena
,
N.
Kirby
, and
C. J.
Drummond
, “
Protic ionic liquids (PILs) nanostructure and physicochemical properties: Development of high-throughput methodology for PIL creation and property screens
,”
Phys. Chem. Chem. Phys.
17
(
4
),
2357
2365
(
2015
).
19.
A.
Zhu
,
L.
Li
,
C.
Zhang
,
Y.
Shen
,
M.
Tang
,
L.
Bai
,
C.
Du
,
S.
Zhang
, and
J.
Wang
, “
An integrated high-throughput strategy enables the discovery of multifunctional ionic liquids for sustainable chemical processes
,”
Green Chem.
21
(
2
),
307
313
(
2019
).
20.
G.
Mafra
,
A. A.
Vieira
,
J.
Merib
,
J. L.
Anderson
, and
E.
Carasek
, “
Single drop microextraction in a 96-well plate format: A step toward automated and high-throughput analysis
,”
Anal. Chim. Acta
1063
,
159
166
(
2019
).
21.
M. E.
Di Pietro
,
T.
Margola
,
G.
Celebre
,
G.
De Luca
, and
G.
Saielli
, “
A combined LX-NMR and molecular dynamics investigation of the bulk and local structure of ionic liquid crystals
,”
Soft Matter
15
(
22
),
4486
4497
(
2019
).
22.
W.
Beckner
and
J.
Pfaendtner
, “
Fantastic liquids and where to find them: Optimizations of discrete chemical space
,”
J. Chem. Inf. Model.
59
(
6
),
2617
2625
(
2019
).
23.
F.
Yusuf
,
T.
Olayiwola
, and
C.
Afagwu
, “
Application of artificial intelligence-based predictive methods in ionic liquid studies: A review
,”
Fluid Phase Equilib.
531
,
112898
(
2021
).
24.
S.
Koutsoukos
,
F.
Philippi
,
F.
Malaret
, and
T.
Welton
, “
A review on machine learning algorithms for the ionic liquid chemical space
,”
Chem. Sci.
12
,
6820
(
2021
).
25.
A.
Barati-Harooni
,
A.
Najafi-Marghmaleki
,
M.
Arabloo
, and
A. H.
Mohammadi
, “
An accurate CSA-LSSVM model for estimation of densities of ionic liquids
,”
J. Mol. Liq.
224
,
954
964
(
2016
).
26.
A.
Barati-Harooni
,
A.
Najafi-Marghmaleki
, and
A. H.
Mohammadi
, “
A reliable radial basis function neural network model (RBF-NN) for the prediction of densities of ionic liquids
,”
J. Mol. Liq.
231
,
462
473
(
2017
).
27.
K.
Paduszyński
, “
Extensive databases and group contribution QSPRs of ionic liquids properties. 1. Density
,”
Ind. Eng. Chem. Res.
58
(
13
),
5322
5338
(
2019
).
28.
K.
Golzar
,
H.
Modarress
, and
S.
Amjad-Iranagh
, “
Evaluation of density, viscosity, surface tension and CO2 solubility for single, binary and ternary aqueous solutions of MDEA, PZ and 12 common ILs by using artificial neural network (ANN) technique
,”
Int. J. Greenhouse Gas Control
53
,
187
197
(
2016
).
29.
Y.
Huang
,
X.
Zhang
,
Y.
Zhao
,
S.
Zeng
,
H.
Dong
, and
S.
Zhang
, “
New models for predicting thermophysical properties of ionic liquid mixtures
,”
Phys. Chem. Chem. Phys.
17
(
40
),
26918
26929
(
2015
).
30.
W.
Beckner
,
C.
Ashraf
,
J.
Lee
,
D. A. C.
Beck
, and
J.
Pfaendtner
, “
Continuous molecular representations of ionic liquids
,”
J. Phys. Chem. B
124
(
38
),
8347
8357
(
2020
).
31.
S.
Atashrouz
,
H.
Mirshekar
,
A.
Hemmati-Sarapardeh
,
M. K.
Moraveji
, and
B.
Nasernejad
, “
Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures
,”
Korean J. Chem. Eng.
34
(
2
),
425
439
(
2017
).
32.
J. C.
Cancilla
,
P.
Díaz-Rodríguez
,
G.
Matute
, and
J. S.
Torrecilla
, “
The accurate estimation of physicochemical properties of ternary mixtures containing ionic liquids via artificial neural networks
,”
Phys. Chem. Chem. Phys.
17
(
6
),
4533
4537
(
2015
).
33.
M.
Mesbah
,
E.
Soroush
, and
M.
Rostampour Kakroudi
, “
Predicting physical properties (viscosity, density, and refractive index) of ternary systems containing 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide, esters and alcohols at 298.15K and atmospheric pressure, using rigorous classification techniques
,”
J. Mol. Liq.
225
,
778
787
(
2017
).
34.
M.-R.
Fatehi
,
S.
Raeissi
, and
D.
Mowla
, “
Estimation of viscosity of binary mixtures of ionic liquids and solvents using an artificial neural network based on the structure groups of the ionic liquid
,”
Fluid Phase Equilib.
364
,
88
94
(
2014
).
35.
H.
Matsuda
,
H.
Yamamoto
,
K.
Kurihara
, and
K.
Tochigi
, “
Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities
,”
Fluid Phase Equilib.
261
(
1
),
434
443
(
2007
).
36.
K.
Tochigi
and
H.
Yamamoto
, “
Estimation of ionic conductivity and viscosity of ionic liquids using a QSPR model
,”
J. Phys. Chem. C
111
(
43
),
15989
15994
(
2007
).
37.
I.
Billard
,
G.
Marcou
,
A.
Ouadi
, and
A.
Varnek
, “
In silico design of new ionic liquids based on quantitative structure−property relationship models of ionic liquid viscosity
,”
J. Phys. Chem. B
115
(
1
),
93
98
(
2011
).
38.
S. A.
Mirkhani
and
F.
Gharagheizi
, “
Predictive quantitative structure–property relationship model for the estimation of ionic liquid viscosity
,”
Ind. Eng. Chem. Res.
51
(
5
),
2470
2477
(
2012
).
39.
R.
Bini
,
M.
Malvaldi
,
W. R.
Pitner
, and
C.
Chiappe
, “
QSPR correlation for conductivities and viscosities of low-temperature melting ionic liquids
,”
J. Phys. Org. Chem.
21
(
7–8
),
622
629
(
2008
).
40.
S.
Martin
,
H. D.
Pratt
, and
T. M.
Anderson
, “
Screening for high conductivity/low viscosity ionic liquids using product descriptors
,”
Mol. Inf.
36
(
7
),
1600125
(
2017
).
41.
M.
Hosseinzadeh
and
A.
Hemmati-Sarapardeh
, “
Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids
,”
J. Mol. Liq.
200
,
340
348
(
2014
).
42.
M.
Lashkarblooki
,
A. Z.
Hezave
,
A. M.
Al-Ajmi
, and
S.
Ayatollahi
, “
Viscosity prediction of ternary mixtures containing ILs using multi-layer perceptron artificial neural network
,”
Fluid Phase Equilib.
326
,
15
20
(
2012
).
43.
F.
Gharagheizi
,
M.
Sattari
,
P.
Ilani-Kashkouli
,
A. H.
Mohammadi
,
D.
Ramjugernath
, and
D.
Richon
, “
A ‘non-linear’ quantitative structure–property relationship for the prediction of electrical conductivity of ionic liquids
,”
Chem. Eng. Sci.
101
,
478
485
(
2013
).
44.
M.
Hosseinzadeh
,
A.
Hemmati-Sarapardeh
,
F.
Ameli
,
F.
Naderi
, and
M.
Dastgahi
, “
A computational intelligence scheme for estimating electrical conductivity of ternary mixtures containing ionic liquids
,”
J. Mol. Liq.
221
,
624
632
(
2016
).
45.
F.
Gharagheizi
,
P.
Ilani-Kashkouli
,
M.
Sattari
,
A. H.
Mohammadi
,
D.
Ramjugernath
, and
D.
Richon
, “
Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids
,”
Chem. Eng. Res. Des.
92
(
1
),
66
79
(
2014
).
46.
A. Z.
Hezave
,
M.
Lashkarbolooki
, and
S.
Raeissi
, “
Using artificial neural network to predict the ternary electrical conductivity of ionic liquid systems
,”
Fluid Phase Equilib.
314
,
128
133
(
2012
).
47.
D.
Yalcin
,
T. C.
Le
,
C. J.
Drummond
, and
T. L.
Greaves
, “
Machine learning approaches for further developing the understanding of the property trends observed in protic ionic liquid containing solvents
,”
J. Phys. Chem. B
123
(
18
),
4085
4097
(
2019
).
48.
M.
Lashkarbolooki
, “
Artificial neural network modeling for prediction of binary surface tension containing ionic liquid
,”
Sep. Sci. Technol.
52
(
8
),
1454
1467
(
2017
).
49.
J. A.
Lazzús
,
F.
Cuturrufo
,
G.
Pulgar-Villarroel
,
I.
Salfate
, and
P.
Vega
, “
Estimating the temperature-dependent surface tension of ionic liquids using a neural network-based group contribution method
,”
Ind. Eng. Chem. Res.
56
(
23
),
6869
6886
(
2017
).
50.
S.
Ma
,
M.
Lv
,
X.
Zhang
,
H.
Zhai
, and
W.
Lv
, “
Computational study of the effects of cations and anions to the cytotoxicity of diverse ionic liquids by supervised machine learning
,”
Chemom. Intell. Lab. Syst.
144
,
138
147
(
2015
).
51.
L.
Cao
,
P.
Zhu
,
Y.
Zhao
, and
J.
Zhao
, “
Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids
,”
J. Hazard. Mater.
352
,
17
26
(
2018
).
52.
M. A.
Sedghamiz
,
A.
Rasoolzadeh
, and
M. R.
Rahimpour
, “
The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids
,”
J. CO2 Util.
9
,
39
47
(
2015
).
53.
H. R.
Amedi
,
A.
Baghban
, and
M. A.
Ahmadi
, “
Evolving machine learning models to predict hydrogen sulfide solubility in the presence of various ionic liquids
,”
J. Mol. Liq.
216
,
411
422
(
2016
).
54.
C. A.
Faúndez
,
E. N.
Fierro
, and
J. O.
Valderrama
, “
Solubility of hydrogen sulfide in ionic liquids for gas removal processes using artificial neural networks
,”
J. Environ. Chem. Eng.
4
(
1
),
211
218
(
2016
).
55.
M. E.
Hamzehie
and
H.
Najibi
, “
Prediction of acid gas solubility in amine, ionic liquid and amino acid salt solutions using artificial neural network and evaluating with new experimental measurements
,”
J. Nat. Gas Sci. Eng.
29
,
252
263
(
2016
).
56.
T. L.
Greaves
,
K. S. S.
McHale
,
R. F.
Burkart-Radke
,
J. B.
Harper
, and
T. C.
Le
, “
Machine learning approaches to understand and predict rate constants for organic processes in mixtures containing ionic liquids
,”
Phys. Chem. Chem. Phys.
23
(
4
),
2742
2752
(
2021
).
57.
R.
Bomparola
,
S.
Caporali
,
A.
Lavacchi
, and
U.
Bardi
, “
Silver electrodeposition from air and water-stable ionic liquid: An environmentally friendly alternative to cyanide baths
,”
Surf. Coat. Technol.
201
(
24
),
9485
9490
(
2007
).
58.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
, “
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
,”
J. Cheminf.
4
(
1
),
17
(
2012
).
59.
A.
Mauri
,
V.
Consonni
,
M.
Pavan
, and
R.
Todeschini
, “
DRAGON software: An easy approach to molecular descriptor calculations
,”
MATCH Commun. Math. Comput. Chem.
56
,
237
248
(
2006
).
60.
T.
Le
,
V. C.
Epa
,
F. R.
Burden
, and
D. A.
Winkler
, “
Quantitative structure–property relationship modeling of diverse materials properties
,”
Chem. Rev.
112
(
5
),
2889
2919
(
2012
).
61.
R.
Todeschini
,
V.
Consonni
,
R.
Mannhold
,
H.
Kubinyi
, and
H.
Timmerman
,
Handbook of Molecular Descriptors
(
Wiley-VCH
,
2008
).
62.
K.
Low
,
R.
Kobayashi
, and
E. I.
Izgorodina
, “
The effect of descriptor choice in machine learning models for ionic liquid melting point prediction
,”
J. Chem. Phys.
153
(
10
),
104101
(
2020
).
63.
F. R.
Burden
and
D. A.
Winkler
, “
New QSAR methods applied to structure−activity mapping and combinatorial chemistry
,”
J. Chem. Inf. Comput. Sci.
39
(
2
),
236
242
(
1999
).
64.
F. R.
Burden
and
D. A.
Winkler
, “
Robust QSAR models using Bayesian regularized neural networks
,”
J. Med. Chem.
42
(
16
),
3183
3187
(
1999
).
65.
D. A.
Winkler
and
F. R.
Burden
, “
Robust QSAR models from novel descriptors and Bayesian regularised neural networks
,”
Mol. Simul.
24
(
4–6
),
243
258
(
2000
).
66.
T. L.
Greaves
,
D. F.
Kennedy
,
S. T.
Mudie
, and
C. J.
Drummond
, “
Diversity observed in the nanostructure of protic ionic liquids
,”
J. Phys. Chem. B
114
(
31
),
10022
10031
(
2010
).
67.
L. H.
Hall
and
L. B.
Kier
, “
The E-state as the basis for molecular structure space definition and structure similarity
,”
J. Chem. Inf. Comput. Sci.
40
(
3
),
784
791
(
2000
).
68.
T. L.
Greaves
,
A.
Weerawardena
,
C.
Fong
,
I.
Krodkiewska
, and
C. J.
Drummond
, “
Protic ionic liquids: Solvents with tunable phase behavior and physicochemical properties
,”
J. Phys. Chem. B
110
(
45
),
22479
22487
(
2006
).

Supplementary Material

You do not currently have access to this content.