It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under “ordinary” reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single–cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born–Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrödinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency ωc is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well.

1.
J.
George
,
A.
Shalabney
,
J. A.
Hutchison
,
C.
Genet
, and
T. W.
Ebbesen
,
J. Phys. Chem. Lett.
6
,
1027
(
2015
).
2.
3.
A. F.
Kockum
,
A.
Miranowicz
,
S.
De Liberato
,
S.
Savasta
, and
F.
Nori
,
Nat. Rev. Phys.
1
,
19
(
2019
).
4.
F.
Herrera
and
J.
Owrutsky
,
J. Chem. Phys.
152
,
100902
(
2020
).
5.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
,
Science
363
,
615
(
2019
).
6.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
,
Phys. Rev. X
5
,
041022
(
2015
).
7.
J.
Flick
,
H.
Appel
,
M.
Ruggenthaler
, and
A.
Rubio
,
J. Chem. Theory Comput.
13
,
1616
(
2017
).
8.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
(
2017
).
9.
L. A.
Martínez-Martínez
,
R. F.
Ribeiro
,
J.
Campos-González-Angulo
, and
J.
Yuen-Zhou
,
ACS Photonics
5
,
167
(
2018
).
10.
L.
Lacombe
,
N. M.
Hofmann
, and
N. T.
Maitra
,
Phys. Rev. Lett.
123
,
083201
(
2019
).
11.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
,
Nat. Commun.
10
,
4685
(
2019
).
12.
J.
Galego
,
C.
Climent
,
F. J.
Garcia-Vidal
, and
J.
Feist
,
Phys. Rev. X
9
,
021057
(
2019
).
13.
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
4883
(
2019
).
14.
J. F.
Triana
,
F. J.
Hernández
, and
F.
Herrera
,
J. Chem. Phys.
152
,
234111
(
2020
).
15.
J. A.
Campos-Gonzalez-Angulo
and
J.
Yuen-Zhou
,
J. Chem. Phys.
152
,
161101
(
2020
).
16.
T. E.
Li
,
A.
Nitzan
, and
J. E.
Subotnik
,
J. Chem. Phys.
152
,
234107
(
2020
).
17.
T. E.
Li
,
J. E.
Subotnik
, and
A.
Nitzan
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
18324
(
2020
).
18.
V. P.
Zhdanov
,
Chem. Phys.
535
,
110767
(
2020
).
19.
T. E.
Li
,
A.
Nitzan
, and
J. E.
Subotnik
,
J. Chem. Phys.
154
,
094124
(
2021
).
20.
T. E.
Li
,
A.
Nitzan
, and
J. E.
Subotnik
,
Angew. Chem.
133
,
15661
(
2021
).
21.
T. E.
Li
,
A.
Nitzan
, and
J. E.
Subotnik
, arXiv:2104.15121 (
2021
).
22.
M.
Du
,
J. A.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
,
J. Chem. Phys.
154
,
084108
(
2021
).
23.
X.
Li
,
A.
Mandal
, and
P.
Huo
,
Nat. Commun.
12
,
1315
(
2021
).
24.
E. W.
Fischer
and
P.
Saalfrank
,
J. Chem. Phys.
154
,
104311
(
2021
).
25.
C.
Schäfer
,
J.
Flick
,
E.
Ronca
,
P.
Narang
, and
A.
Rubio
, arXiv:2104.12429v1 (
2021
).
26.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
55
,
11462
(
2016
).
27.
J.
Bonini
and
J.
Flick
, arXiv:2108.11564 (
2021
).
28.
P.-Y.
Yang
and
J.
Cao
,
J. Phys. Chem. Lett.
12
,
9531
(
2021
).
29.
C.
Schäfer
,
M.
Ruggenthaler
, and
A.
Rubio
,
Phys. Rev. A
98
,
043801
(
2018
).
30.
H.-D.
Meyer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
351
(
2012
).
31.
W. H.
Miller
,
J. Chem. Phys.
62
,
1899
(
1975
).
32.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
33.
T.
Seideman
and
W. H.
Miller
,
J. Chem. Phys.
96
,
4412
(
1992
).
34.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
35.
R.
Levine
,
Molecular Reaction Dynamics
(
Cambridge University Press
,
2005
).
36.
N.
Tanaka
,
Y.
Xiao
, and
A. C.
Lasaga
,
J. Atmos. Chem.
23
,
37
(
1996
).
37.
X.
Zhu
,
K. C.
Thompson
, and
T. J.
Martínez
,
J. Chem. Phys.
150
,
164103
(
2019
).
38.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
39.
U.
Manthe
,
H. D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
40.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
41.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
42.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, The MCTDH Package, Version 8.2 (2000);
H.-D.
Meyer
, Version 8.3 (2002); Version 8.4 (2007);
O.
Vendrell
and
H.-D.
Meye
, Version 8.5 (2013); Version 8.5 contains the MLMCTDH algorithm. See http://mctdh.uni-hd.de. Used versions: 8.5.12 (2020).
43.
S.
Jevtic
and
J.
Anders
,
J. Chem. Phys.
147
,
114108
(
2017
).
44.
C.
Rietze
,
E.
Titov
,
S.
Lindner
, and
P.
Saalfrank
,
J. Phys.: Condens. Matter
29
,
314002
(
2017
).
You do not currently have access to this content.