We present an embedded fragment approach for high-level quantum chemical calculations on local features in periodic systems. The fragment is defined as a set of localized orbitals (occupied and virtual) corresponding to a converged periodic Hartree–Fock solution. These orbitals serve as the basis for the in-fragment post-Hartree–Fock treatment. The embedding field for the fragment, consisting of the Coulomb and exchange potential from the rest of the crystal, is included in the fragment’s one-electron Hamiltonian. As an application of the embedded fragment approach, we investigate the performance of full configuration interaction quantum Monte Carlo (FCIQMC) with the adaptive shift. As the orbital choice, we use the natural orbitals from the distinguishable cluster method with singles and doubles. FCIQMC is a stochastic approximation to the full CI method and can be routinely applied to much larger active spaces than the latter. This makes this method especially attractive in the context of open shell defects in crystals, where fragments of adequate size can be rather large. As a test case, we consider dissociation of a fluorine atom from a fluorographane surface. This process poses a challenge for high-level electronic structure models as both the static and dynamic correlations are essential here. Furthermore, the active space for an adequate fragment (32 electrons in 173 orbitals) is already quite large even for FCIQMC. Despite this, FCIQMC delivers accurate dissociation and total energies.

1.
H.
Stoll
, “
Correlation energy of diamond
,”
Phys. Rev. B
46
,
6700
(
1992
).
3.
B.
Paulus
, “
The method of increments—A wavefunction-based ab initio correlation method for solids
,”
Phys. Rep.
428
,
1
(
2006
).
4.
A.
Hermann
and
P.
Schwerdtfeger
, “
Ground-state properties of crystalline ice from periodic Hartree-Fock calculations and a coupled-cluster-based many-body decomposition of the correlation energy
,”
Phys. Rev. Lett.
101
,
183005
(
2008
).
5.
B.
Paulus
and
H.
Stoll
,
Accurate Condensed-Phase Quantum Chemistry
(
CRC Press
,
2010
), Chapter The method of increments - A wavefunction-based correlation method for extended systems.
6.
C.
Müller
and
B.
Paulus
, “
Wavefunction-based electron correlation methods for solids
,”
Phys. Chem. Chem. Phys.
14
,
7605
(
2012
).
7.
C.
Tuma
and
J.
Sauer
, “
Treating dispersion effects in extended systems by hybrid MP2:DFT calculations—Protonation of isobutene in zeolite ferrierite
,”
Phys. Chem. Chem. Phys.
8
,
3955
(
2006
).
8.
S. J.
Nolan
,
M. J.
Gillan
,
D.
Alfè
,
N. L.
Allan
, and
F. R.
Manby
, “
Calculation of properties of crystalline lithium hydride using correlated wave function theory
,”
Phys. Rev. B
80
,
165109
(
2009
).
9.
S.
Wen
and
G. J. O.
Beran
,
J. Chem. Theory Comput.
7
,
3733
(
2011
).
10.
J.
Li
,
O.
Sode
,
G. A.
Voth
, and
S.
Hirata
, “
A solid-solid phase transition in carbon dioxide at high pressures and intermediate temperatures
,”
Nat. Commun.
4
,
2647
(
2013
).
11.
J.
Yang
,
W.
Hu
,
D.
Usvyat
,
D.
Matthews
,
M.
Schütz
, and
G. K.-L.
Chan
, “
Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy
,”
Science
345
,
640
(
2014
).
12.
C.
Müller
and
D.
Usvyat
, “
Incrementally corrected periodic local MP2 calculations: I. The cohesive energy of molecular crystals
,”
J. Chem. Theory Comput.
9
,
5590
(
2013
).
13.
D.
Usvyat
, “
High precision quantum-chemical treatment of adsorption: Benchmarking physisorption of molecular hydrogen on graphane
,”
J. Chem. Phys.
143
,
104704
(
2015
).
14.
T.
Tsatsoulis
,
F.
Hummel
,
D.
Usvyat
,
M.
Schütz
,
G. H.
Booth
,
S. S.
Binnie
,
M. J.
Gillan
,
D.
Alfè
,
A.
Michaelides
, and
A.
Grüneis
, “
A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface
,”
J. Chem. Phys.
146
,
204108
(
2017
).
15.
M.
Schütz
,
L.
Maschio
,
A. J.
Karttunen
, and
D.
Usvyat
, “
Exfoliation energy of black phosphorus revisited: A coupled cluster benchmark
,”
J. Phys. Chem. Lett.
8
,
1290
(
2017
).
16.
M.
Alessio
,
F. A.
Bischoff
, and
J.
Sauer
, “
Chemically accurate adsorption energies for methane and ethane monolayers on the MgO (001) surface
,”
Phys. Chem. Chem. Phys.
20
,
9760
(
2018
).
17.
M.
Alessio
,
D.
Usvyat
, and
J.
Sauer
, “
Chemically accurate adsorption energies: CO and H2O on the MgO(001) surface
,”
J. Chem. Theory Comput.
15
,
1329
(
2019
).
18.
W.
Förner
,
J.
Ladik
,
P.
Otto
, and
J.
C̄ížek
,
Chem. Phys.
97
,
251
(
1985
).
19.
P. Y.
Ayala
,
K. N.
Kudin
, and
G. E.
Scuseria
,
J. Chem. Phys.
115
,
9698
(
2001
).
20.
W.
Förner
,
R.
Knab
,
J.
Čížek
, and
J.
Ladik
,
J. Chem. Phys.
106
,
10248
(
1997
).
21.
S.
Hirata
,
I.
Grabowski
,
M.
Tobita
, and
R. J.
Bartlett
, “
Highly accurate treatment of electron correlation in polymers: Coupled-cluster and many-body perturbation theories
,”
Chem. Phys. Lett.
345
,
475
480
(
2001
).
22.
N.
Flocke
and
R. J.
Bartlett
,
J. Chem. Phys.
118
,
5326
(
2003
).
23.
C.
Pisani
,
L.
Maschio
,
S.
Casassa
,
M.
Halo
,
M.
Schütz
, and
D.
Usvyat
, “
Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications
,”
J. Comput. Chem.
29
,
2113
(
2008
).
24.
M.
Marsman
,
A.
Grüneis
,
J.
Paier
, and
G.
Kresse
,
J. Chem. Phys.
130
,
184103
(
2009
).
25.
D.
Usvyat
,
L.
Maschio
,
C.
Pisani
, and
M.
Schütz
, “
Second order local Møller-Plesset perturbation theory for periodic systems: The CRYSCOR code
,”
Z. Phys. Chem.
224
,
441
(
2010
).
26.
C.
Pisani
,
M.
Schütz
,
S.
Casassa
,
D.
Usvyat
,
L.
Maschio
,
M.
Lorenz
, and
A.
Erba
,
Phys. Chem. Chem. Phys.
14
,
7615
(
2012
).
27.
J. J.
Shepherd
,
A.
Grüneis
,
G.
Booth
,
M.
Marsman
,
G.
Kresse
, and
A.
Alavi
,
Phys. Rev. B
86
,
035111
(
2012
).
28.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
,
Nature
493
,
365
(
2013
).
29.
A.
Grüneis
,
J. J.
Shepherd
,
A.
Alavi
,
D. P.
Tew
, and
G. H.
Booth
,
J. Chem. Phys.
139
,
084112
(
2013
).
30.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
9
,
2654
(
2013
).
31.
D.
Usvyat
,
L.
Maschio
, and
M.
Schütz
, “
Periodic local MP2 method employing orbital specific virtuals
,”
J. Chem. Phys.
143
,
102805
(
2015
).
32.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
, “
Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach
,”
J. Chem. Phys.
143
,
102803
(
2015
).
33.
A.
Grüneis
, “
A coupled cluster and explicitly correlated Møller-Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal
,”
J. Chem. Phys.
143
,
102817
(
2015
).
34.
V. V.
Rybkin
and
J.
VandeVondele
, “
Spin-unrestricted second-order Møller–Plesset (MP2) forces for the condensed phase: From molecular radicals to F-centers in solids
,”
J. Chem. Theory Comput.
12
,
2214
(
2016
).
35.
G. H.
Booth
,
T.
Tsatsoulis
,
G. K.-L.
Chan
, and
A.
Grüneis
, “
From plane waves to local Gaussians for the simulation of correlated periodic systems
,”
J. Chem. Phys.
145
,
084111
(
2016
).
36.
J.
McClain
,
Q.
Sun
,
G. K.-L.
Chan
, and
T. C.
Berkelbach
, “
Gaussian-based coupled-cluster theory for the ground-state and band structure of solids
,”
J. Chem. Theory Comput.
13
,
1209
(
2017
).
37.
T.
Gruber
,
K.
Liao
,
T.
Tsatsoulis
,
F.
Hummel
, and
A.
Grüneis
, “
Applying the coupled-cluster ansatz to solids and surfaces in the thermodynamic limit
,”
J. Phys. Rev. X
8
,
021043
(
2018
).
38.
P. J.
Bygrave
,
N. L.
Allan
, and
F. R.
Manby
, “
The embedded many-body expansion for energetics of molecular crystals
,”
J. Chem. Phys.
137
,
164102
(
2012
).
39.
O.
Masur
,
M.
Schütz
,
L.
Maschio
, and
D.
Usvyat
, “
Fragment-based direct-local-ring-coupled-cluster doubles treatment embedded in the periodic Hartree–Fock solution
,”
J. Chem. Theory Comput.
12
,
5145
(
2016
).
40.
D.
Usvyat
,
L.
Maschio
, and
M.
Schütz
, “
Periodic and fragment models based on the local correlation approach
,”
WIREs Comput. Mol. Sci.
8
,
e1357
(
2018
).
41.
H.-H.
Lin
,
L.
Maschio
,
D.
Kats
,
D.
Usvyat
, and
T.
Heine
, “
Fragment-based restricted active space configuration interaction with second-order corrections embedded in periodic Hartree–Fock wave function
,”
J. Chem. Theory Comput.
16
,
7100
(
2020
).
42.
T.
Schäfer
,
F.
Libisch
,
G.
Kresse
, and
A.
Grüneis
, “
Local embedding of coupled cluster theory into the random phase approximation using plane waves
,”
J. Chem. Phys.
154
,
011101
(
2021
).
43.
B. T. G.
Lau
,
G.
Knizia
, and
T. C.
Berkelbach
, “
Regional embedding enables high-level quantum chemistry for surface science
,”
J. Phys. Chem. Lett.
12
,
1104
(
2021
).
44.
E.-C.
Flach
,
C. L.
Wieland
,
D.
Kats
, and
D.
Usvyat
, “
Excited states on defects in periodic systems: i. embedded-fragment configuration interaction singles
” (unpublished).
45.
T.
Mullan
,
L.
Maschio
,
P.
Saalfrank
, and
D.
Usvyat
, “
Reaction barriers on non-conducting surfaces beyond periodic local MP2: Diffusion of hydrogen on α-Al2O3(0001) as a test case
,”
J. Chem. Phys.
156
,
074109
(
2022
).
46.
Y. A.
Aoto
,
A.
Bargholz
,
D.
Kats
,
H.-J.
Werner
, and
A.
Köhn
, “
Perturbation expansion of internally contracted coupled-cluster theory up to third order
,”
J. Chem. Theory Comput.
15
,
2291
(
2019
).
47.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
(
1999
).
48.
J.
Hachmann
,
W.
Cardoen
, and
G. K.-L.
Chan
,
J. Chem. Phys.
125
,
144101
(
2006
).
49.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
50.
G.
Knizia
and
G. K.-L.
Chan
, “
Density matrix embedding: A simple alternative to dynamical mean-field theory
,”
Phys. Rev. Lett.
109
,
186404
(
2012
).
51.
G.
Knizia
and
G. K.-L.
Chan
, “
Density matrix embedding: A strong-coupling quantum embedding theory
,”
J. Chem. Theory Comput.
9
,
1428
(
2013
).
52.
F. A.
Evangelista
,
J. Chem. Phys.
140
,
124114
(
2014
).
53.
T. N.
Lan
,
A. A.
Kananenka
, and
D.
Zgid
, “
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
,”
J. Chem. Phys.
143
,
241102
(
2015
).
54.
N. S.
Blunt
,
S. D.
Smart
,
J. A. F.
Kersten
,
J. S.
Spencer
,
G. H.
Booth
, and
A.
Alavi
, “
Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application
,”
J. Chem. Phys.
142
,
184107
(
2015
).
55.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
13
,
1595
(
2017
).
56.
A. A.
Holmes
,
C. J.
Umrigar
, and
S.
Sharma
,
J. Chem. Phys.
147
,
164111
(
2017
).
57.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
, “
Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo
,”
J. Chem. Phys.
132
,
041103
(
2010
).
58.
K.
Ghanem
,
A. Y.
Lozovoi
, and
A.
Alavi
, “
Unbiasing the initiator approximation in full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
151
,
224108
(
2019
).
59.
N.
Govind
,
Y. A.
Wang
,
A. J. R.
da Silva
, and
E. A.
Carter
, “
Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment
,”
Chem. Phys. Lett.
295
,
129
134
(
1998
).
60.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
, “
Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states
,”
J. Chem. Phys.
116
,
42
(
2002
).
61.
K.
Jug
and
T.
Bredow
, “
Models for the treatment of crystalline solids and surfaces
,”
J. Comput. Chem.
25
,
1551
(
2004
).
62.
P.
Huang
and
E. A.
Carter
, “
Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter
,”
J. Chem. Phys.
125
,
084102
(
2006
).
63.
C.
Müller
,
B.
Herschend
,
K.
Hermansson
, and
B.
Paulus
,
J. Chem. Phys.
128
,
214701
(
2008
).
64.
P.
Huang
and
E. A.
Carter
, “
Advances in correlated electronic structure methods for solids, surfaces, and nanostructures
,”
Annu. Rev. Phys. Chem.
59
,
261
(
2008
).
65.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
III
, “
A simple, exact density-functional-theory embedding scheme
,”
J. Chem. Theory Comput.
8
,
2564
(
2012
).
66.
T. A.
Barnes
,
J. D.
Goodpaster
,
F. R.
Manby
, and
T. F.
Miller
, “
Accurate basis set truncation for wavefunction embedding
,”
J. Chem. Phys.
139
,
024103
(
2013
).
67.
A. D.
Boese
and
J.
Sauer
, “
Accurate adsorption energies of small molecules on oxide surfaces: CO–MgO(001)
,”
Phys. Chem. Chem. Phys.
15
,
16481
(
2013
).
68.
J. D.
Goodpaster
,
T. A.
Barnes
,
F. R.
Manby
, and
T. F.
Miller
, “
Accurate and systematically improvable density functional theory embedding for correlated wavefunctions
,”
J. Chem. Phys.
140
,
18A507
(
2014
).
69.
C. R.
Jacob
and
J.
Neugebauer
, “
Subsystem density-functional theory
,”
WIREs Comput. Mol. Sci.
4
,
325
(
2014
).
70.
M. E.
Fornace
,
J.
Lee
,
K.
Miyamoto
,
F. R.
Manby
, and
T. F.
Miller
III
, “
Embedded mean-field theory
,”
J. Chem. Theory Comput.
11
,
568
(
2015
).
71.
B.
Hégely
,
P. R.
Nagy
,
G. G.
Ferenczy
, and
M.
Kállay
, “
Exact density functional and wave function embedding schemes based on orbital localization
,”
J. Chem. Phys.
145
,
064107
(
2016
).
72.
F.
Libisch
,
M.
Marsman
,
J.
Burgdörfer
, and
G.
Kresse
, “
Embedding for bulk systems using localized atomic orbitals
,”
J. Chem. Phys.
147
,
034110
(
2017
).
73.
D. V.
Chulhai
and
J. D.
Goodpaster
, “
Projection-based correlated wave function in density functional theory embedding for periodic systems
,”
J. Chem. Theory Comput.
14
,
1928
1942
(
2018
).
74.
C. M.
Zicovich-Wilson
,
R.
Dovesi
, and
V. R.
Saunders
, “
A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations
,”
J. Chem. Phys.
115
,
9708
(
2001
).
75.
R.
Dovesi
,
A.
Erba
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
B.
Civalleri
,
L.
Maschio
,
M.
Rérat
,
S.
Casassa
,
J.
Baima
,
S.
Salustro
, and
B.
Kirtman
, “
Quantum-mechanical condensed matter simulations with CRYSTAL
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1360
(
2018
).
76.
V.
Saunders
,
C.
Freyria-Fava
,
R.
Dovesi
,
L.
Salasco
, and
C.
Roetti
,
Mol. Phys.
77
,
629
(
1992
).
77.
P. J.
Knowles
and
N. C.
Handy
, “
A determinant based full configuration interaction program
,”
Comput. Phys. Commun.
54
,
75
(
1989
).
78.
K.
Ghanem
,
K.
Guther
, and
A.
Alavi
, “
The adaptive shift method in full configuration interaction quantum Monte Carlo: Development and applications
,”
J. Chem. Phys.
153
,
224115
(
2020
).
79.
J. J.
Eriksen
et al, “
The ground state electronic energy of benzene
,”
J. Phys. Chem. Lett.
11
,
8922
(
2020
).
80.
J. E.
Deustua
,
I.
Magoulas
,
J.
Shen
, and
P.
Piecuch
, “
Communication: Approaching exact quantum chemistry by cluster analysis of full configuration interaction quantum Monte Carlo wave functions
,”
J. Chem. Phys.
149
,
151101
(
2018
).
81.
H.-J.
Werner
et al, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
82.
D.
Kats
and
F. R.
Manby
, “
Sparse tensor framework for implementation of general local correlation methods
,”
J. Chem. Phys.
138
,
144101
(
2013
).
83.
D.
Kats
, “
Speeding up local correlation methods
,”
J. Chem. Phys.
141
,
244101
(
2014
).
84.
D.
Kats
and
A.
Köhn
, “
On the distinguishable cluster approximation for triple excitations
,”
J. Chem. Phys.
150
,
151101
(
2019
).
85.
T.
Schraivogel
and
D.
Kats
, “
Accuracy of the distinguishable cluster approximation for triple excitations for open-shell molecules and excited states
,”
J. Chem. Phys.
155
,
064101
(
2021
).
86.
M.
Hanauer
and
A.
Köhn
, “
Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly
,”
J. Chem. Phys.
134
,
204111
(
2011
).
87.
A. S.
Hansen
,
G.
Baardsen
,
E.
Rebolini
,
L.
Maschio
, and
T. B.
Pedersen
, “
Representation of the virtual space in extended systems – A correlation energy convergence study
,”
Mol. Phys.
118
,
e1733118
(
2020
).
88.
A.
Erba
and
M.
Halo
, CRYSCOR09 User’s Manual,
2010
, http://www.cryscor.unito.it.
89.
E.
Vitale
,
A.
Alavi
, and
D.
Kats
, “
FCIQMC-tailored distinguishable cluster approach
,”
J. Chem. Theory Comput.
16
,
5621
(
2020
).
90.
D.
Kats
,
D.
Kreplin
,
H.-J.
Werner
, and
F. R.
Manby
, “
Accurate thermochemistry from explicitly correlated distinguishable cluster approximation
,”
J. Chem. Phys.
142
,
064111
(
2015
).
91.
M.
Schütz
,
D.
Usvyat
,
M.
Lorenz
,
C.
Pisani
,
L.
Maschio
,
S.
Casassa
, and
M.
Halo
, in
Accurate Condensed Phase Quantum Chemistry
, edited by
F. R.
Manby
(
CRC Press
,
Boca Raton, FL
,
2010
), p.
29
.
92.
D.
Usvyat
, “
Periodic explicitly correlated treatment of solids: I. Periodic local LMP2-F12 method
,”
J. Chem. Phys.
139
,
194101
(
2013
).
93.
B. I.
Dunlap
, “
Robust and variational fitting
,”
Phys. Chem. Chem. Phys.
2
,
2113
(
2000
).
94.
A. J.
Cohen
,
H.
Luo
,
K.
Guther
,
W.
Dobrautz
,
D. P.
Tew
, and
A.
Alavi
, “
Similarity transformation of the electronic Schrödinger equation via Jastrow factorization
,”
J. Chem. Phys.
151
,
061101
(
2019
).
95.
T.
Schraivogel
,
A. J.
Cohen
,
A.
Alavi
, and
D.
Kats
, “
Transcorrelated coupled cluster methods
,”
J. Chem. Phys.
155
,
191101
(
2021
).

Supplementary Material

You do not currently have access to this content.