Using two-dimensional electronic spectroscopy, we measured the Qx to Qy transfer dynamics of the chlorophyll a (Chl a) manifold in the photosystem II (PSII) monomeric core complex from Arabidopsis thaliana. A PSII monomeric core consists of 35 Chls a and no Chl b, thus allowing for a clear window to study Chl a Qx dynamics in a large pigment-protein complex. Initial excitation in the Qx band results in a transfer to the Qy band in less than 60 fs. Upon the ultrafast transfer, regardless of the excitation frequency within the Qx band, the quasi-transient absorption spectra are very similar. This observation indicates that Chl a’s Qx to Qy transfer is not frequency selective. Using a simple model, we determined that this is not due to the lifetime broadening of the ultrafast transfer but predominantly due to a lack of correlation between the PSII core complex’s Chl a Qx and Qy bands. We suggest the origin to be the intrinsic loss of correlation during the Qx to Qy internal conversion as observed in previous studies of molecular Chl a dissolved in solvents.

1.
J.
Barber
,
Q. Rev. Biophys.
49
,
e14
(
2016
).
2.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Wiley Blackwell
,
2014
).
3.
F.
Müh
and
A.
Zouni
,
Protein Sci.
29
(
5
),
1090
1119
(
2020
).
4.
H.
Yu
,
T.
Hamaguchi
,
Y.
Nakajima
,
K.
Kato
,
K.
Kawakami
,
F.
Akita
,
K.
Yonekura
, and
J.-R.
Shen
,
Biochim. Biophys. Acta, Bioenerg.
1862
(
10
),
148471
(
2021
).
5.
A.
Sirohiwal
,
R.
Berraud-Pache
,
F.
Neese
,
R.
Izsák
, and
D. A.
Pantazis
,
J. Phys. Chem. B
124
(
40
),
8761
8771
(
2020
).
6.
J. R.
Reimers
,
Z.-L.
Cai
,
R.
Kobayashi
,
M.
Rätsep
,
A.
Freiberg
, and
E.
Krausz
,
Sci. Rep.
3
(
1
),
2761
(
2013
).
7.
M.
Rätsep
,
J.
Linnanto
, and
A.
Freiberg
,
J. Chem. Phys.
130
(
19
),
194501
(
2009
).
8.
C.
Weiss
,
J. Mol. Spectrosc.
44
(
1
),
37
80
(
1972
).
9.
Y.
Song
,
A.
Schubert
,
E.
Maret
,
R. K.
Burdick
,
B. D.
Dunietz
,
E.
Geva
, and
J. P.
Ogilvie
,
Chem. Sci.
10
(
35
),
8143
8153
(
2019
).
10.
E.
Bukartė
,
A.
Haufe
,
D.
Paleček
,
C.
Büchel
, and
D.
Zigmantas
,
Chem. Phys.
530
,
110643
(
2020
).
11.
R.
Croce
and
H.
van Amerongen
,
Nat. Chem. Biol.
10
(
7
),
492
501
(
2014
).
12.
R.
Croce
and
H.
van Amerongen
,
Science
369
(
6506
),
eaay2058
(
2020
).
13.
T.
Bittner
,
G. P.
Wiederrecht
,
K.-D.
Irrgang
,
G.
Renger
, and
M. R.
Wasielewski
,
Chem. Phys.
194
(
2
),
311
322
(
1995
).
14.
J. P.
Connelly
,
M. G.
Müller
,
M.
Hucke
,
G.
Gatzen
,
C. W.
Mullineaux
,
A. V.
Ruban
,
P.
Horton
, and
A. R.
Holzwarth
,
J. Phys. Chem. B
101
(
10
),
1902
1909
(
1997
).
15.
P.
Akhtar
,
M.
Dorogi
,
K.
Pawlak
,
L.
Kovács
,
A.
Bóta
,
T.
Kiss
,
G.
Garab
, and
P. H.
Lambrev
,
J. Biol. Chem.
290
(
8
),
4877
4886
(
2015
).
16.
H.-G.
Duan
,
A. L.
Stevens
,
P.
Nalbach
,
M.
Thorwart
,
V. I.
Prokhorenko
, and
R. J. D.
Miller
,
J. Phys. Chem. B
119
(
36
),
12017
12027
(
2015
).
17.
P.
Akhtar
,
C.
Zhang
,
T. N.
Do
,
G.
Garab
,
P. H.
Lambrev
, and
H.-S.
Tan
,
J. Phys. Chem. Lett.
8
(
1
),
257
263
(
2017
).
18.
P.
Akhtar
,
T. N.
Do
,
P. J.
Nowakowski
,
A.
Huerta-Viga
,
M. F.
Khyasudeen
,
P. H.
Lambrev
, and
H.-S.
Tan
,
J. Phys. Chem. B
123
(
31
),
6765
6775
(
2019
).
19.
P. H.
Lambrev
,
P.
Akhtar
, and
H.-S.
Tan
,
Biochim. Biophys. Acta, Bioenerg.
1861
(
4
),
148050
(
2019
).
20.
A.
Marin
,
F.
Passarini
,
R.
Croce
, and
R.
van Grondelle
,
Biophys. J.
99
(
12
),
4056
4065
(
2010
).
21.
G.
Cinque
,
R.
Croce
,
A.
Holzwarth
, and
R.
Bassi
,
Biophys. J.
79
(
4
),
1706
1717
(
2000
).
22.
V.
Mascoli
,
V.
Novoderezhkin
,
N.
Liguori
,
P.
Xu
, and
R.
Croce
,
Biochim. Biophys. Acta, Bioenerg.
1861
(
3
),
148156
(
2020
).
23.
E.
Romero
,
I. H. M.
van Stokkum
,
V. I.
Novoderezhkin
,
J. P.
Dekker
, and
R.
van Grondelle
,
Biochemistry
49
(
20
),
4300
4307
(
2010
).
24.
J. A.
Myers
,
K. L. M.
Lewis
,
F. D.
Fuller
,
P. F.
Tekavec
,
C. F.
Yocum
, and
J. P.
Ogilvie
,
J. Phys. Chem. Lett.
1
(
19
),
2774
2780
(
2010
).
25.
J.
Pan
,
A.
Gelzinis
,
V.
Chorošajev
,
M.
Vengris
,
S. S.
Senlik
,
J.-R.
Shen
,
L.
Valkunas
,
D.
Abramavicius
, and
J. P.
Ogilvie
,
Phys. Chem. Chem. Phys.
19
(
23
),
15356
15367
(
2017
).
26.
F. D.
Fuller
,
J.
Pan
,
A.
Gelzinis
,
V.
Butkus
,
S. S.
Senlik
,
D. E.
Wilcox
,
C. F.
Yocum
,
L.
Valkunas
,
D.
Abramavicius
, and
J. P.
Ogilvie
,
Nat. Chem.
6
(
8
),
706
711
(
2014
).
27.
E.
Romero
,
R.
Augulis
,
V. I.
Novoderezhkin
,
M.
Ferretti
,
J.
Thieme
,
D.
Zigmantas
, and
R.
van Grondelle
,
Nat. Phys.
10
(
9
),
676
682
(
2014
).
28.
H.-G.
Duan
,
V. I.
Prokhorenko
,
E.
Wientjes
,
R.
Croce
,
M.
Thorwart
, and
R. J. D.
Miller
,
Sci. Rep.
7
(
1
),
12347
(
2017
).
29.
Y.
Shi
,
J.-Y.
Liu
, and
K.-L.
Han
,
Chem. Phys. Lett.
410
(
4–6
),
260
263
(
2005
).
30.
E.
Meneghin
,
C.
Leonardo
,
A.
Volpato
,
L.
Bolzonello
, and
E.
Collini
,
Sci. Rep.
7
(
1
),
11389
(
2017
).
31.
P. M.
Shenai
,
S.
Fernandez-Alberti
,
W. P.
Bricker
,
S.
Tretiak
, and
Y.
Zhao
,
J. Phys. Chem. B
120
(
1
),
49
58
(
2015
).
32.
W. P.
Bricker
,
P. M.
Shenai
,
A.
Ghosh
,
Z.
Liu
,
M. G. M.
Enriquez
,
P. H.
Lambrev
,
H.-S.
Tan
,
C. S.
Lo
,
S.
Tretiak
,
S.
Fernandez-Alberti
, and
Y.
Zhao
,
Sci. Rep.
5
(
1
),
13625
(
2015
).
33.
M. F.
Khyasudeen
,
P. J.
Nowakowski
, and
H.-S.
Tan
,
J. Phys. Chem. B
123
(
6
),
1359
1364
(
2019
).
34.
S.
Caffarri
,
R.
Kouřil
,
S.
Kereïche
,
E. J.
Boekema
, and
R.
Croce
,
EMBO J.
28
(
19
),
3052
3063
(
2009
).
35.
T. N.
Do
,
J. H. N.
Sim
,
H. L.
Nguyen
,
Y.
Lu
, and
H.-S.
Tan
,
J. Phys. Chem. Lett.
12
(
1
),
165
170
(
2020
).
36.
T. N.
Do
,
M. F.
Gelin
, and
H.-S.
Tan
,
J. Chem. Phys.
147
(
14
),
144103
(
2017
).
37.
T. N.
Do
,
A.
Huerta-Viga
,
P.
Akhtar
,
H. L.
Nguyen
,
P. J.
Nowakowski
,
M. F.
Khyasudeen
,
P. H.
Lambrev
, and
H.-S.
Tan
,
J. Chem. Phys.
151
(
20
),
205101
(
2019
).
38.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
39.
M. L.
Groot
,
J. P.
Dekker
,
R.
van Grondelle
,
F. T. H.
den Hartog
, and
S.
Völker
,
J. Phys. Chem.
100
(
27
),
11488
11495
(
1996
).
40.
S. M.
Stigler
,
Stat. Sci.
4
(
2
),
73
(
1989
).
41.
K.
Kwak
,
S.
Park
,
I. J.
Finkelstein
, and
M. D.
Fayer
,
J. Chem. Phys.
127
(
12
),
124503
(
2007
).
42.
F.
Šanda
,
V.
Perlík
,
C. N.
Lincoln
, and
J.
Hauer
,
J. Phys. Chem. A
119
(
44
),
10893
10909
(
2015
).
43.
M. F.
Khyasudeen
,
P. J.
Nowakowski
,
H. L.
Nguyen
,
J. H. N.
Sim
,
T. N.
Do
, and
H.-S.
Tan
,
Chem. Phys.
527
,
110480
(
2019
).
44.
G.
Raszewski
,
B. A.
Diner
,
E.
Schlodder
, and
T.
Renger
,
Biophys. J.
95
(
1
),
105
119
(
2008
).
45.
G.
Raszewski
and
T.
Renger
,
J. Am. Chem. Soc.
130
(
13
),
4431
4446
(
2008
).
46.
T.
Renger
,
J. Phys. Chem. B
125
(
24
),
6406
6416
(
2021
).
47.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
(
3
),
137
254
(
2001
).
48.
T.
Förster
,
Ann. Phys.
437
(
1–2
),
55
75
(
2006
).
49.
S.
Caffarri
,
K.
Broess
,
R.
Croce
, and
H.
van Amerongen
,
Biophys. J.
100
(
9
),
2094
2103
(
2011
).
50.
M.
Kasha
,
Discuss. Faraday Soc.
9
,
14
(
1950
).
You do not currently have access to this content.