Stretching of semicrystalline polymer materials is fundamentally important in their mechanical performance and industrial processing. By means of dynamic Monte Carlo simulations, we compared the parallel stretching processes between the initially bulk amorphous and semicrystalline polymers at various temperatures. In the early stage of stretching, semicrystalline polymers perform local and global melting-recrystallization behaviors at low and high temperatures, while the memory effects occur upon global melting-recrystallization at middle temperatures. However, the final crystallinities, crystalline bond orientations, chain-folding probabilities, residual stresses, and crystallite morphologies at high enough strains appear as the same at each temperature, irrelevant to the initially amorphous and semicrystalline polymers, indicating that the common post-growth melting-reorganization processes determine the final products. In addition, both final products harvest the highest crystallinities in the middle temperature region because the postgrowth stage yields the vast nuclei followed with less extent of crystal growth in the low temperature region and few nuclei followed with large extent of crystal growth in the high temperature region. Our observations imply that a large enough strain can effectively remove the thermal history of polymers, similar to the thermal treatment at a high enough temperature; therefore, the fracture strength of semicrystalline polymers depends upon their final structures in stretching, not related to their nascent semicrystalline structures.

1.
B.
Wunderlich
,
Macromolecular Physics
(
Academic Press
,
New York
,
1976
), Vol. 2.
2.
D. J.
Blundell
,
A.
Keller
, and
A. J.
Kovacs
,
J. Polym. Sci., Part B: Polym. Lett.
4
,
481
(
1966
).
3.
J.
Xu
,
Y.
Ma
,
W.
Hu
,
M.
Rehahn
, and
G.
Reiter
,
Nat. Mater.
8
,
348
(
2009
).
4.
A.
Maus
,
E.
Hempel
,
T.
Thurn-Albrecht
, and
K.
Saalwächter
,
Eur. Phys. J. E
23
,
91
(
2007
).
5.
S.
Yamazaki
,
M.
Hikosaka
,
A.
Toda
,
I.
Wataoka
, and
F.
Gu
,
Polymer
43
,
6585
(
2002
).
6.
Y.-S.
Zhang
,
L.-W.
Zhong
,
S.
Yang
,
D.-H.
Liang
, and
E.-Q.
Chen
,
Polymer
53
,
3621
(
2012
).
7.
Y. P.
Khanna
,
A. C.
Reimschuessel
,
A.
Banerjie
, and
C.
Altman
,
Polym. Eng. Sci.
28
,
1600
(
1988
).
8.
Y. P.
Khanna
,
R.
Kumar
, and
A. C.
Reimschuessel
,
Polym. Eng. Sci.
28
,
1607
(
1988
).
9.
G. C.
Alfonso
and
A.
Ziabicki
,
Colloid Polym. Sci.
273
,
317
(
1995
).
10.
K.
Cho
,
D. N.
Saheb
,
J.
Choi
, and
H.
Yang
,
Polymer
43
,
1407
(
2002
).
11.
K.
Cho
,
D.
Nabi Saheb
,
H.
Yang
,
B.-I.
Kang
,
J.
Kim
, and
S.-S.
Lee
,
Polymer
44
,
4053
(
2003
).
12.
B. O.
Reid
,
M.
Vadlamudi
,
A.
Mamun
,
H.
Janani
,
H.
Gao
,
W.
Hu
, and
R. G.
Alamo
,
Macromolecules
46
,
6485
(
2013
).
13.
H.
Gao
,
M.
Vadlamudi
,
R. G.
Alamo
, and
W.
Hu
,
Macromolecules
46
,
6498
(
2013
).
14.
Y.
Wang
,
Y.
Lu
,
J.
Zhao
,
Z.
Jiang
, and
Y.
Men
,
Macromolecules
47
,
8653
(
2014
).
15.
Y.
Liao
,
L.
Liu
,
Z.
Ma
, and
Y.
Li
,
Macromolecules
53
,
2088
(
2020
).
16.
C.-J.
Qv
,
W.
Li
,
R.-J.
Zhao
, and
Z.
Ma
, “
Memory effect of crystallization in 1-Butene/α-olefin copolymers
,”
Chin. J. Polym. Sci.
(published online
2022
).
17.
M.
Muthukumar
,
J. Chem. Phys.
145
,
031105
(
2016
).
18.
D. R.
Lippits
,
S.
Rastogi
, and
G. W. H.
Höhne
,
Phys. Rev. Lett.
96
,
218303
(
2006
).
19.
S.
Talebi
,
R.
Duchateau
,
S.
Rastogi
,
J.
Kaschta
,
G. W. M.
Peters
, and
P. J.
Lemstra
,
Macromolecules
43
,
2780
(
2010
).
20.
A.
Pandey
,
A.
Toda
, and
S.
Rastogi
,
Macromolecules
44
,
8042
(
2011
).
21.
G.
Reiter
,
J. Chem. Phys.
152
,
150901
(
2020
).
22.
X.
Guan
,
H.
Gao
,
L.
Zha
,
Y.
Wu
, and
W.
Hu
,
Polymer
98
,
282
(
2016
).
23.
A.
Mamun
,
S.
Umemoto
,
N.
Ishihara
, and
N.
Okui
,
Polymer
47
,
5531
(
2006
).
24.
W. B.
Hu
,
Polymer Physics: A Molecular Approach
(
Springer-Verlag
,
Wien
,
2013
), p.
120
.
25.
Y.
Nie
,
H.
Gao
, and
W.
Hu
,
Polymer
55
,
1267
(
2014
).
26.
Y.
Nie
,
H.
Gao
,
M.
Yu
,
Z.
Hu
,
G.
Reiter
, and
W.
Hu
,
Polymer
54
,
3402
(
2013
).
27.
L.
Zha
,
Y.
Wu
, and
W.
Hu
,
J. Phys. Chem. B
120
,
6890
(
2016
).
28.
M. S.
Lavine
,
N.
Waheed
, and
G. C.
Rutledge
,
Polymer
44
,
1771
(
2003
).
29.
D. A.
Nicholson
and
G. C.
Rutledge
,
J. Chem. Phys.
145
,
244903
(
2016
).
30.
R. S.
Payal
and
J.-U.
Sommer
,
Polymers
13
,
2078
(
2021
).
31.
I.
Dukovski
and
M.
Muthukumar
,
J. Chem. Phys.
118
,
6648
(
2003
).
32.
R. S.
Graham
and
P. D.
Olmsted
,
Phys. Rev. Lett.
103
,
115702
(
2009
).
33.
A.
Jabbarzadeh
and
R. I.
Tanner
,
Macromolecules
43
,
8136
(
2010
).
34.
S.
Lee
and
G. C.
Rutledge
,
Macromolecules
44
,
3096
(
2011
).
35.
Y.
Takashi
,
Polymer
54
,
3086
(
2013
).
36.
J.
Wang
,
Y.
Yu
,
Y.
Guo
,
W.
Luo
, and
W.
Hu
,
Chin. J. Polym. Sci.
39
,
906
(
2021
).
37.
W.
Luo
,
J.
Wang
,
Y.
Guo
, and
W.
Hu
,
Polymer
235
,
124306
(
2021
).
38.
P. J.
Flory
,
Proc. R. Soc. London, Ser. A
234
,
60
(
1956
).
39.
W.
Hu
,
J. Chem. Phys.
113
,
3901
(
2000
).
40.
W.
Hu
and
D.
Frenkel
,
Adv. Polym. Sci.
191
,
1
(
2005
).
41.
A.
Einstein
,
Annu. Phys.
322
,
549
(
1905
).
You do not currently have access to this content.